992 resultados para ~(266)Bh
Resumo:
本文研究了在4.0GPa 和1550℃下非晶玻璃转化成翡翠的晶化过程中,时间参数对翡翠的结晶度及硬度的影响.发现在该实验条件下晶化时间在15min 内得到的翡翠有两个硬度值.由结晶度曲线可知,要使非晶全部转化成翡翠,晶化时间至少要>15min.另外,还利用断面的 SEM 分析观察了翡翠的晶粒编织、生长情况,并就翡翠的成核及生长机理进行了初步探讨.翡翠的结晶及生长是一个很复杂的过程,本实验发现当翡翠的结晶生长完成时,其编织还在进行,增加高压下的保温时间,有利于翡翠形成紧密的编织,能更好地改善翡翠的宏观质地.此外,根据人工翡翠及天然翡翠的晶粒编织情况的对比,表明要达到天然翡翠的质地,需要减少成核数,增加晶体的生长速度,才能得到与天然翡翠同样的微观编织结构.
Resumo:
本文叙述了采用色度法对稀土LF_(21)铝合金氧化膜电解着色进行的研究。结果表明:电解着色液浓度、着色电压、电流密度、温度、时间以及合金成分等因素对电解着色均有较大影响。稀土可显著提高着色速度,稀土含量为0.30%时电解着色膜性能最佳。
Resumo:
本文利用电子轰击(El.Eletron Impact)、化学电离(CI, Chemical Ionization)、解吸化学电离(DCI,Desorption Chemical Ionization)及快原子轰击(FAB,Fast Atom Bombardment)等不同质谱技术研究了β-羧乙基三氯锗的质谱特征,讨论了它们在FAB谱中与底物的缩合反应。
Resumo:
采用电视光谱测量装置对脉冲激光的波长进行监测和标定,在可见光波段监测精度达5×10~(-4)nm。
Resumo:
OKINAWA TROUGH; BASIN
Resumo:
Thylakoid membranes were isolated from Gymnodinium sp. and spinach, whereas the phycobilisomes were isolated and purified from red alga Porphyridium cruentum. The absorption spectra of the purified phycobilisomes (PBS) showed three peaks at 548, 564, and 624 nm, respectively, and the ratio of the fluorescence intensity at the lambda(680)(em) to lambda(80)(em5) that at was about 7.3. All these results demonstrated that the purified PBS remained intact. The thylakoid membranes were incubated with the purified phycobilisomes, and the thylakoid membranes, which harbored the phycobilisomes, were purified by sucrose density gradient centrifugation. Meantime, the conjugates of phycobilisome-thylakoid membranes were constructed using glutaraldehyde and further purified. Their characteristics were studied by measuring the absorption spectra and fluorescence emission spectra. The results showed that the phycobilisomes from Porphyridium cruentum can attach to the thylakoid membranes from Gymnodinium sp. and spinach without covalent cross-linking, but the excited energy transfer did not occur. The conjugate of phycobilisome-thylakoid. membranes with covalent cross-linking exhibits the excited energy transfer between the phycobilisomes and the thylakoid membranes.
Resumo:
Coral bleaching, which is defined as the loss of colour in corals due to the loss of their symbiotic algae (commonly called zooxanthellae) or pigments or both, is occurring globally at increasing rates, and its harm becomes more and more serious during these two decades. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibited high mortality, reduced fecundity and productivity and increased susceptibility to diseases. This decreased coral fitness is easily to lead to reef degradation and ultimately to the breakdown of the coral reef ecosystems. Recently, the reasons leading to coral bleaching are thought to be as follows: too high or too low temperature, excess ultraviolet exposure, heavy metal pollution, cyanide poison and seasonal cycle. To date there has been little knowledge of whether mariculture can result in coral bleaching and which substance has the worst effect on corals. And no research was conducted on the effect of hypoxia on corals. To address these questions, effects of temperature, hypoxia, ammonia and nitrate on bleaching of three coral species were studied through examination of morphology and the measurement of the number of symbiotic algae of three coral species Acropora nobilis, Palythoa sp. and Alveopora verrilliana. Results showed that increase in temperature and decrease in dissolved oxygen could lead to increasing number of symbiotic algae and more serious bleaching. In addition, the concentration of 0.001 mmol/L ammonia or nitrate could increase significantly the expulsion of the symbiotic algae of the three coral species. Except for Acropora nobilis, the numbers of symbiotic algae of other two corals did not significantly increase with the increasing concentration of ammonia and nitrate. Furthermore, different hosts have different stress susceptibilities on coral bleaching.
Resumo:
The responses of stem segments of watercress (Nasturtium officinale R. Br.) to 6-BA,NAA and 2,4-D were studied. MS medium supplemented with 2.0 mg/L 6-BA, 0.2 mg/L 2,4-D was used for callus initiation and maintenance. MS medium supplemented with 4.0 mg/L 6-BA was suitable for plant regeneration and MS medium without plant hormone supplement was used for rooting and plant propagation. For screening of salt tolerant calli, stem segments of watercress were plated onto callus initiation medium containing 1/3 natural seawater. Seventeen out of the 325 plated explants produced calli. The growth curves demonstrated that the growth rate of salt-tolerant calli on saline medium almost matched that of the control calli on normal medium. Some of the salt-tolerant calli were transferred to the normal regeneration medium or saline regeneration medium to induce plant regeneration. In the first case, buds and shoots were regenerated in the same way as those of control calli on normal regeneration medium. More than 1 000 regenerated shoots were obtained of which 83 regenerated shoots were cut and transferred to saline MS base medium. At first, all shoot growth was inhibited, but 40 days after the transfer, rapid-growing axillary shoots were observed on 16 of the original shoots but none on the control shoots on saline MS base medium. Moreover, green spots appeared on most calli 10 days after they were transferred to saline medium, however buds appeared only on 5 calli from the 30 transferred calli and at the end only 2 rapid-growing shoots were obtained from two calli. In total, 18 variant lines were obtained through. propagation of the salt-tolerant shoots on saline MS base medium. RAPD analysis was performed in 10 of the 18 salt-tolerant variant lines and DNA variation was detected in all the tested variant lines.
Resumo:
A gene encoding a chitosanase (mschito) was cloned from Microbacterium, sp. OU01. The ORF consists of 801 bp which encoded a polypeptide of 266 amino acid residues. The deduced amino acid sequence shows 98% identity to that of the chitosanase reported in Pseudomonas sp. A-01. In addition, the fusion protein containing MSCHITO was expressed in E. coli and purified using Ni-NTA affinity chromatography. The purified rMSCHITO protein degraded the chitosan (the degree of deacetylation of 99%) and produced a mixture of chitooligosaccharides. The MSCHITO is thus an endo-chitosanase.
Resumo:
A new fermentative hydrogen-producing bacterium was isolated from mangrove sludge and identified as Pantoea agglomerans using light microscopic examination, Biolog test and 16S rRNA gene sequence analysis. The isolated bacterium, designated as P. agglomerans BH-18, is a new strain that has never been optimized as a potential hydrogen-producing bacterium. In this study, the culture conditions and the hydrogen-producing ability of P. agglomerans BH-18 were examined. The strain was a salt-tolerant facultative anaerobe with the initial optimum pH value at 8.0-9.0 and temperature at 30 degrees C on cell growth. During fermentation, hydrogen started to evolve when cell growth entered late-exponential phase and was mainly produced in the stationary phase. The strain was able to produce hydrogen over a wide range of initial pH from 5 to 10, with an optimum initial pH of 6. The level of hydrogen production was affected by the initial glucose concentration, and the optimum value was found to be 10 g glucose/l. The maximum hydrogen-producing yield (2246 ml/l) and overall hydrogen production rate (160 ml/l/h) were obtained at an initial glucose concentration of 10 g/l and an initial pH value of 7.2 in marine culture conditions. In particular, the level of hydrogen production was also affected by the salt concentration. Hydrogen production reached a higher level in fresh culture conditions than in marine ones. In marine conditions, hydrogen productivity was 108 ml/l/h at an initial glucose concentration of 20 g/l and pH value of 7.2, whereas, it increased by 27% in fresh conditions. In addition, this strain could produce hydrogen using glucose and many other carbon sources such as fructose, sucrose, sorbitol and so on. As a result, it is possible that P. agglomerans BH-18 is used for biohydrogen production and biological treatment of mariculture wastewater and marine organic waste. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this study, using a bioassay-guided isolation and purification procedure, we obtained 3-chloro-2,5-dihydroxybenzyl alcohol from a marine-derived Ampelomyces species that effectively inhibited larval settlement of the tubeworm Hydroides elegans and of cyprids of the barnacle Balanus amphitrite. The inhibitive effect on larval settlement was nontoxic and the EC50 of 3-chloro-2,5-dihydroxybenzyl alcohol ranged from 3.19 mu g ml(-1) to 3.81 mu g ml(-1) while the LC50 was 266.68 lambda g ml(-1) for B. amphitrite cyprids; EC50 ranged from 0.67 mu g ml(-1) to 0.78 mu g ml(-1), and LC50 was 2.64 mu g ml(-1) for competent larvae of H. elegans, indicating that inhibitive effect of this compound was nontoxic. At a concentration of 50 mu g per disc, this compound showed strong inhibitive effects on the growth of 13 out of 15 marine bacterial species tested in disc diffusion bioassay. Overall, the high inhibitory activities against bacteria and larval settlement as well as the non- or low-toxic nature of this compound to the barnacle and polychaete larvae suggest this compound could be a potent antifoulant and/or antibiotic.