895 resultados para zinc
Resumo:
Spent coffee grounds (SCG) are usually disposed as common garbage, without specific reuse strategies implemented so far. Due to its recognised richness in bioactive compounds, the effect of SCG on lettuce’s macro- and micro-elements was assessed to define its effectiveness for agro industrial reuse. A greenhouse pot experiment was conducted with different amounts of fresh and composted spent coffee, and potassium, magnesium, phosphorous, calcium, sodium, iron, manganese, zinc and copper were analysed. A progressive decrease on all lettuce mineral elements was verified with the increase of fresh spent coffee, except for potassium. In opposition, an increment of lettuce’s essential macro-elements was verified when low amounts of composted spent coffee were applied (5%, v/v), increasing potassium content by 40%, manganese by 30%, magnesium by 20%, and sodium by 10%, of nutritional relevance This practical approach offers an alternative reuse for this by-product, extendable to other crops, providing value-added vegetable products.
Resumo:
The mineral content (phosphorous (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu)) of eight ready-to-eat baby leaf vegetables was determined. The samples were subjected to microwave-assisted digestion and the minerals were quantified by High-Resolution Continuum Source Atomic Absorption Spectrometry (HR-CS-AAS) with flame and electrothermal atomisation. The methods were optimised and validated producing low LOQs, good repeatability and linearity, and recoveries, ranging from 91% to 110% for the minerals analysed. Phosphorous was determined by a standard colorimetric method. The accuracy of the method was checked by analysing a certified reference material; results were in agreement with the quantified value. The samples had a high content of potassium and calcium, but the principal mineral was iron. The mineral content was stable during storage and baby leaf vegetables could represent a good source of minerals in a balanced diet. A linear discriminant analysis was performed to compare the mineral profile obtained and showed, as expected, that the mineral content was similar between samples from the same family. The Linear Discriminant Analysis was able to discriminate different samples based on their mineral profile.
Resumo:
The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.
Resumo:
Fresh-cut vegetables are a successful convenient healthy food. Nowadays, the presence of new varieties of minimally processed vegetables in the market is common in response to the consumers demand for new flavours and high quality products. Within the most recent fresh-cut products are the aromatic herbs. In this work, the objective was to evaluate the nutritional quality and stability of four fresh-cut aromatic herbs. Several physicochemical quality characteristics (colour, pH, total soluble solids, and total titratable acidity) were monitored in fresh-cut chives, coriander, spearmint and parsley leaves, stored under refrigeration (3 ± 1 ºC) during 10 days. Their nutritional composition was determined, including mineral composition (phosphorous, potassium, sodium, calcium, magnesium, iron, zinc, manganese and copper) and fat- and water-soluble vitamin contents. Total soluble phenolics, flavonoids and the antioxidant capacity were determined by spectrophotometric methods. The aromatic herbs kept their fresh appearance during the storage, maintaining their colour throughout shelf-life. Their macronutrient composition and mineral content were stable during storage. Coriander had the highest mineral and fatsoluble vitamin content, while spearmint showed the best scores in the phenolic, flavonoid and antioxidant capacity assays. Vitamins and antioxidant capacity showed some variation during storage, with a differential behaviour of each compound according to the sample.
Resumo:
Among aminoacidopathies, phenylketonuria (PKU) is the most prevalent one. Early diagnosis in the neonatal period with a prompt nutritional therapy (low natural-protein and phenylalanine diet, supplemented with phenylalanine-free amino acid mixtures and special low-protein foods) remains the mainstay of the treatment. Data considering nutrient contents of cooked dishes is lacking. In this study, fourteen dishes specifically prepared for PKU individuals were analysed, regarding the lipid profile and iron and zinc contents. These dishes are poor sources of essential nutrients like Fe, Zn or n-3 fatty acids, reinforcing the need for adequate supplementation to cover individual patients’ needs. This study can contribute to a more accurate adjustment of PKU diets and supplementation in order to prevent eventual nutritional deficiencies. This study contributes to a better understanding of nutrient intake from PKU patients’ meals, showing the need for dietary supplementation.
Resumo:
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Febs Journal (2009)276:1776-1786
Resumo:
Considering that the number of day-care centers for pre-school-age children has expanded rapidly in developing countries, and that these institutions presenting conditions that facilitate the transmission of many enteric agents, a parasitological survey was carried out in three municipal day-cares from Botucatu: two in the urban area (one in downtown area and the other one in the city periphery area) and the third in the rural area. Three separate stool specimens were collected from 147 children ranging from 0 to 72 months old and 20 staff members. Each stool specimen was processed by Lutz and zinc sulfate flotation methods. The frequency of giardiasis observed among children of downtown, periphery and rural day-cares was 69.6%, 52.7% and 69.6%, respectively. Only one employee was positive for G. lamblia. The examination of three stool specimens increased the positivity for G. lamblia: from the ninety three final positive examinations, 24 (25.5%) and 8 (8.5%) were positives only after examination of the second and third samples, respectively. Others intestinal organisms like Ascaris lumbricoides (20.4%), Trichuris trichiura (19.0%). Hymenolepis nana (8.8%), Entamoeba coli (22.4%) and Blastocystis hominis (32.0%) were frequently found in the children. There was no significant association among localization of the day-cares, sex of the children and the levels of G. lamblia infection. According to the age, G. lamblia was found mainly in children between 12 to 47 months old.
Resumo:
S100A6 is a small EF-hand calcium- and zinc-binding protein involved in the regulation of cell proliferation and cytoskeletal dynamics. It is overexpressed in neurodegenerative disorders and a proposed marker for Amyotrophic Lateral Sclerosis (ALS). Following recent reports of amyloid formation by S100 proteins, we investigated the aggregation properties of S100A6. Computational analysis using aggregation predictors Waltz and Zyggregator revealed increased propensity within S100A6 helices HI and HIV. Subsequent analysis of Thioflavin-T binding kinetics under acidic conditions elicited a very fast process with no lag phase and extensive formation of aggregates and stacked fibrils as observed by electron microscopy. Ca2+ exerted an inhibitory effect on the aggregation kinetics, which could be reverted upon chelation. An FT-IR investigation of the early conformational changes occurring under these conditions showed that Ca2+ promotes anti-parallel β-sheet conformations that repress fibrillation. At pH 7, Ca2+ rendered the fibril formation kinetics slower: time-resolved imaging showed that fibril formation is highly suppressed, with aggregates forming instead. In the absence of metals an extensive network of fibrils is formed. S100A6 oligomers, but not fibrils, were found to be cytotoxic, decreasing cell viability by up to 40%. This effect was not observed when the aggregates were formed in the presence of Ca2+. Interestingly, native S1006 seeds SOD1 aggregation, shortening its nucleation process. This suggests a cross-talk between these two proteins involved in ALS. Overall, these results put forward novel roles for S100 proteins, whose metal-modulated aggregation propensity may be a key aspect in their physiology and function.