964 resultados para working correlation structure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of RK-1, an antimicrobial peptide from rabbit kidney recently discovered from homology screening based on the distinctive physicochemical properties of the corticostatins/defensins. RK-1 consists of 32 residues, including six cysteines arranged into three disulfide bonds. It exhibits antimicrobial activity against Escherichia coli and activates Ca2+ channels in vitro. Through its physicochemical similarity, identical cysteine spacing, and linkage to the corticostatins/defensins, it was presumed to be a member of this family. However, RK-1 lacks both a large number of arginines in the primary sequence and a high overall positive charge, which are characteristic of this family of peptides. The three-dimensional solution structure, determined by NMR, consists of a triple-stranded antiparallel beta -sheet and a series of turns and is similar to the known structures of other alpha -defensins. This has enabled the definitive classification of RK-1 as a member of this family of antimicrobial peptides. Ultracentrifuge measurements confirmed that like rabbit neutrophil defensins, RK-1 is monomeric in solution, in contrast to human neutrophil defensins, which are dimeric.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of a large ongoing project, the Memory, Attention and Problem Solving (MAPS) study, we investigated whether genetic variability explains some of the variance in psychophysiological correlates of brain function, namely, the P3 and SW components of event-related potentials (ERPs). These ERP measures are minute time recordings of brain processes and, because they reflect fundamental cognitive processing, provide a unique window on the millisecondto- millisecond transactions that occur at the cognitive level and taking place in the human brain. The extent to which the variance in P3 and SW components is influenced by genetic factors was examined in 350 identical and nonidentical twin pairs aged 16 years. ERPs were recorded from 15 scalp electrodes during the performance of a visuospatial delayed response task that engages working memory. Multivariate genetic analyses using MX were used to estimate genetic and environmental influences on individual differences in brain functioning and to identify putative genetic factors common to the ERP measures and psychometric IQ. For each of the ERP measures, correlation among electrode sites was high, a spatial pattern was evident, and a large part of the genetic variation in the ERPs appeared to be mediated by a common genetic factor. Moderate within-pair concordance in MZ pairs was found for all ERP measures, with higher correlations found for P3 than SW, and the MZ twin pair correlations were approximately twice the DZ correlations, suggesting a genetic influence. Correlations between ERP measures and psychometric IQ were found and, although moderately low, were evident across electrode site. The analyses show that the ERP components, P3 and SW, are promising phenotypes of the neuroelectrical activity of the brain and have the potential to be used in linkage and association analysis in the search for QTLs influencing cognitive function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The aim of this study was to study ecological correlations between age-adjusted all-cause mortality rates in Australian statistical divisions and (1) the proportion of residents that self-identify as Indigenous, (2) remoteness, and (3) socio-economic deprivation. Methods All-cause mortality rates for 57 statistical divisions were calculated and directly standardized to the 1997 Australian population in 5-year age groups using Australian Bureau of Statistics (ABS) data. The proportion of residents who self-identified as Indigenous was obtained from the 1996 Census. Remoteness was measured using ARIA (Accessibility and Remoteness Index for Australia) values. Socioeconomic deprivation was measured using SEIFA (Socio-Economic index for Australia) values from the ABS. Results Age-standardized all-cause mortality varies twofold from 5.7 to 11.3 per 1000 across Australian statistical divisions. Strongest correlation was between Indigenous status and mortality (r = 0.69, p < 0.001). correlation between remoteness and mortality was modest (r = 0.39, p = 0.002) as was correlation between socio-economic deprivation and mortality (r = -0.42, p = 0.001). Excluding the three divisions with the highest mortality, a multiple regression model using the logarithm of the adjusted mortality rate as the dependent variable showed that the partial correlation (and hence proportion of the variance explained) for Indigenous status was 0.03 (9 per cent; p = 0.03), for SEIFA score was -0.17 (3 per cent; p = 0.22); and for remoteness was -0.22 (5 per cent; p = 0.13). Collectively, the three variables studied explain 13 per cent of the variability in mortality. Conclusions Ecological correlation exists between all-cause mortality, Indigenous status, remoteness and disadvantage across Australia. The strongest correlation is with indigenous status, and correlation with all three characteristics is weak when the three statistical divisions with the highest mortality rates are excluded. intervention targeted at these three statistical divisions could reduce much of the variability in mortality in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-II is a signal transduction protein that is part of the cellular machinery used by many bacteria to regulate the activity of glutamine synthetase and the transcription of its gene. The structure of P-II was solved using a hexagonal crystal form (form I). The more physiologically relevant form of P-II is a complex with small molecule effecters. We describe the structure of P-II with ATP obtained by analysis of two different crystal forms (forms II and III) that were obtained by co-crystallization of P-II with ATP. Both structures have a disordered recognition (T) loop and show differences at their C termini. Comparison of these structures with the form I protein reveals changes that occur on binding ATP. Surprisingly, the structure of the P-II/ATP complex differs with that of GlnK, a functional homologue. The two proteins bind the base and sugar of ATP in a similar manner but show differences in the way that they interact with the phosphates. The differences in structure could account for the differences in their activities, and these have been attributed to a difference in sequence at position 82. It has been demonstrated recently that P-II and GlnK form functional heterotrimers in vivo. We construct models of the heterotrimers and examine the junction between the subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The C-21 bisfuranoterpene (-)-isotetradehydrofurospongin-1 (6), previously isolated from a Western Australian Spongia sp., has been reisolated from a specimen of Spirastrella papilosa collected during scientific trawling operations in the Great Australian Eight. A 2D NMR analysis of 6 has prompted reassignment of the published structure 5, while degradation and chiral HPLC analysis have allowed determination of the absolute stereochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much interest has been generated by recent reports on the discovery of circular (i.e. head-to-tail cyclized) proteins in plants. Here we report the three-dimensional structure of one of the newest such circular proteins, MCoTI-II, a novel trypsin inhibitor from Momordica cochinchinensis, a member of the Cucurbitaceae plant family. The structure consists of a small beta -sheet, several turns, and a cystine knot arrangement of the three disulfide bonds. Interestingly, the molecular topology is similar to that of the plant cyclotides (Craik, D. J., Daly, N. L., Bond, T., and Waine, C. (1999) J. Mol. Biol, 294, 1327-1336), which derive from the Rubiaceae and Violaceae plant families, have antimicrobial activities, and exemplify the cyclic cystine knot structural motif as part of their circular backbone. The sequence, biological activity, and plant family of MCoTI-II are all different from known cyclotides. However, given the structural similarity, cyclic backbone, and plant origin of MCoTI-II, we propose that MCoTI-II can be classified as a new member of the cyclotide class of proteins. The expansion of the cyclotides to include trypsin inhibitory activity and a new plant family highlights the importance and functional variability of circular proteins and the fact that they are more common than has previously been believed, Insights into the possible roles of backbone cyclization have been gained by a comparison of the structure of MCoTI-II with the homologous acyclic trypsin inhibitors CMTI-I and EETI-II from the Cucurbitaceae plant family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautrophicum at 2.0 Angstrom resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta -strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta -sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXAFS spectra of [(HC(Ph2PO)(3))(2)Cu](ClO4)(2). 2H(2)O have been measured at room temperature. These show that the CuO6 unit is tetragonally elongated, rather than having the compressed tetragonal geometry previously inferred from the X-ray crystal structure determination. [GRAPHICS]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper assesses the reliability with which fossil reefs record the diversity and community structure of adjacent Recent reefs. The diversity and taxonomic composition of Holocene raised fossil reefs was compared with those of modern reef coral life and death assemblages in adjacent moderate and low-energy shallow reef habitats Of Madang Lagoon, Papua New Guinea. Species richness per sample area and Shannon-Wiener diversity (H') were highest in the fossil reefs, intermediate in the life assemblages, and lowest in the death assemblages. The taxonomic composition of the fossil reefs was most similar to the combination of the life and death assemblages from the modern reefs adjacent to the two fossil reefs. Depth zonation was recorded accurately in the fossil reefs. The Madang fossil reefs represent time-averaged composites of the combined life and death assemblages as they existed at the time the reef was uplifted. Because fossil reefs include overlapping cohorts from the life and death assemblages, lagoonal facies of fossil reefs are dominated by the dominant sediment-producing taxa, which are not necessarily the most abundant in the life assemblage. Rare or slow-growing taxa accumulate more slowly than the encasing sediments and are underrepresented in fossil reef lagoons. Time-averaging dilutes the contribution of rare taxa, rather than concentrating their contribution. Consequently, fidelity indices developed for mollusks in sediments yield low values in coral reef death and fossil assemblages. Branching corals dominate lagoonal facies of fossil reefs because they are abundant, they grow and produce sediment rapidly, and most of the sediment they produce is not exported. Fossil reefs distinguished kilometer-scale variations in community structure more clearly than did the modern life assemblages. This difference implies that fossil,reefs may provide a better long-term record of community structure than modern reefs. This difference also suggests that modern kilometer-scale variation in coral reef community structure may have been reduced by anthropogenic degradation, even in the relatively unimpacted reefs of Madang Lagoon. Holocene and Pleistocene fossil reefs provide a time-integrated historical record of community composition and may be used as long-term benchmarks for comparison with modern, degraded, nearshore reefs. Comparisons between fossil reefs and degraded modern reefs display gross changes in community structure more effectively than they demonstrate local extinction of rare taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sm and Sm-like proteins are key components of small ribonucleoproteins involved in many RNA and DNA processing pathways. In eukaryotes, these complexes contain seven unique Sm or Sm-like (Lsm) proteins assembled as hetero-heptameric rings, whereas in Archaea and bacteria six or seven-membered rings are made from only a single polypeptide chain. Here we show that single Sm and Lsm proteins from yeast also have the capacity to assemble into homo-oligomeric rings. Formation of homo-oligomers by the spliceosomal small nuclear ribonucleoprotein components SmE and SmF preclude hetero-interactions vital to formation of functional small nuclear RNP complexes in vivo. To better understand these unusual complexes, we have determined the crystal structure of the homomeric assembly of the spliceosomal protein SmF. Like its archaeal/bacterial homologs, the SmF complex forms a homomeric ring but in an entirely novel arrangement whereby two heptameric rings form a co-axially stacked dimer via interactions mediated by the variable loops of the individual SmF protein chains. Furthermore, we demonstrate that the homomeric assemblies of yeast Sm and Lsm proteins are capable of binding not only to oligo(U) RNA but, in the case of SmF, also to oligo(dT) single-stranded DNA.