959 resultados para work function measurements
Resumo:
Peer reviewed
Resumo:
Funding This work was funded by Arthritis Research UK (grants 17859, 17971, 19654), INNOCHEM EU FP6 (grant LSHB-CT-2005-51867), MRC (MR/K013076/1) and the William Harvey Research Foundation
Resumo:
Funded by Natural Environment Research Council PRECIP and PATAGON
Resumo:
In this work, we used direct measurements with the surface force apparatus to determine the pH-dependent electrostatic charge density of a single binding face of streptavidin. Mean field calculations have been used with considerable success to model electrostatic potential fields near protein surfaces, but these models and their inherent assumptions have not been tested directly at the molecular level. Using the force apparatus and immobilized, oriented monolayers of streptavidin, we measured a pI of 5–5.5 for the biotin-binding face of the protein. This differs from the pI of 6.3 for the soluble protein and confirms that we probed the local electrostatic features of the macromolecule. With finite difference solutions of the linearized Poisson–Boltzmann equation, we then calculated the pH-dependent charge densities adjacent to the same face of the protein. These calculated values agreed quantitatively with those obtained by direct force measurements. Although our study focuses on the pH-dependence of surface electrostatics, this direct approach to probing the electrostatic features of proteins is applicable to investigations of any perturbations that alter the charge distribution of the surfaces of immobilized molecules.
Resumo:
Recruitment of intracellular proteins to the plasma membrane is a commonly found requirement for the initiation of signal transduction events. The recently discovered pleckstrin homology (PH) domain, a structurally conserved element found in ∼100 signaling proteins, has been implicated in this function, because some PH domains have been described to be involved in plasma membrane association. Furthermore, several PH domains bind to the phosphoinositides phosphatidylinositol-(4,5)-bisphosphate and phosphatidylinositol-(3,4,5)-trisphosphate in vitro, however, mostly with low affinity. It is unclear how such weak interactions can be responsible for observed membrane binding in vivo as well as the resulting biological phenomena. Here, we investigate the structural and functional requirements for membrane association of cytohesin-1, a recently discovered regulatory protein of T cell adhesion. We demonstrate that both the PH domain and the adjacent carboxyl-terminal polybasic sequence of cytohesin-1 (c domain) are necessary for plasma membrane association and biological function, namely interference with Jurkat cell adhesion to intercellular adhesion molecule 1. Biosensor measurements revealed that phosphatidylinositol-(3,4,5)-trisphosphate binds to the PH domain and c domain together with high affinity (100 nM), whereas the isolated PH domain has a substantially lower affinity (2–3 μM). The cooperativity of both elements appears specific, because a chimeric protein, consisting of the c domain of cytohesin-1 and the PH domain of the β-adrenergic receptor kinase does not associate with membranes, nor does it inhibit adhesion. Moreover, replacement of the c domain of cytohesin-1 with a palmitoylation–isoprenylation motif partially restored the biological function, but the specific targeting to the plasma membrane was not retained. Thus we conclude that two elements of cytohesin-1, the PH domain and the c domain, are required and sufficient for membrane association. This appears to be a common mechanism for plasma membrane targeting of PH domains, because we observed a similar functional cooperativity of the PH domain of Bruton’s tyrosine kinase with the adjacent Bruton’s tyrosine kinase motif, a novel zinc-containing fold.
Resumo:
Androgen receptor (AR) belongs to the nuclear receptor superfamily and mediates the biological actions of male sex steroids. In this work, we have characterized a novel 130-kDa Ser/Thr protein kinase ANPK that interacts with the zinc finger region of AR in vivo and in vitro. The catalytic kinase domain of ANPK shares considerable sequence similarity with the minibrain gene product, a protein kinase suggested to contribute to learning defects associated with Down syndrome. However, the rest of ANPK sequence, including the AR-interacting interface, exhibits no apparent homology with other proteins. ANPK is a nuclear protein that is widely expressed in mammalian tissues. Its overexpression enhances AR-dependent transcription in various cell lines. In addition to the zinc finger region, ligand-binding domain and activation function AF1 of AR are needed, as the activity of AR mutants devoid of these domains was not influenced by ANPK. The receptor protein does not appear to be a substrate for ANPK in vitro, and overexpression of ANPK does not increase the extent of AR phosphorylation in vivo. In view of this, it is likely that ANPK-mediated activation of AR function is exerted through modification of AR-associated proteins, such as coregulatory factors, and/or through stabilization of the receptor protein against degradation.
Resumo:
In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi’s (1829) 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the η-function identities in appendix I of Macdonald’s work [Macdonald, I. G. (1972) Invent. Math. 15, 91–143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415–456] identities involving representing a positive integer by sums of 4n2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson’s Cℓ nonterminating 6φ5 summation theorem, and Andrews’ basic hypergeometric series proof of Jacobi’s 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n2 or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.
Resumo:
This study addresses the properties of a newly identified internal ribosome entry site (IRES) contained within the mRNA of the homeodomain protein Gtx. Sequential deletions of the 5′ untranslated region (UTR) from either end did not define distinct IRES boundaries; when five nonoverlapping UTR fragments were tested, four had IRES activity. These observations are consistent with other cellular IRES analyses suggesting that some cellular IRESes are composed of segments (IRES modules) that independently and combinatorially contribute to overall IRES activity. We characterize a 9-nt IRES module from the Gtx 5′ UTR that is 100% complementary to the 18S rRNA at nucleotides 1132–1124. In previous work, we demonstrated that this mRNA segment could be crosslinked to its complement within intact 40S subunits. Here we show that increasing the number of copies of this IRES module in the intercistronic region of a dicistronic mRNA strongly enhances IRES activity in various cell lines. Ten linked copies increased IRES activity up to 570-fold in Neuro 2a cells. This level of IRES activity is up to 63-fold greater than that obtained by using the well characterized encephalomyocarditis virus IRES when tested in the same assay system. When the number of nucleotides between two of the 9-nt Gtx IRES modules was increased, the synergy between them decreased. In light of these findings, we discuss possible mechanisms of ribosome recruitment by cellular mRNAs, address the proposed role of higher order RNA structures on cellular IRES activity, and suggest parallels between IRES modules and transcriptional enhancer elements.
Resumo:
Cytochrome c maturation in Escherichia coli requires the ccm operon, which encodes eight membrane proteins (CcmABCDEFGH). CcmE is a periplasmic heme chaperone that binds heme covalently and transfers it onto apocytochrome c in the presence of CcmF, CcmG, and CcmH. In this work we addressed the functions of the ccmABCD gene products with respect to holo-CcmE formation and the subsequent ligation of heme to apocytochrome c. In the absence of the ccmABCD genes, heme is not bound to CcmE. We report that CcmC is functionally uncoupled from the ABC transporter subunits CcmA and CcmB, because it is the only Ccm protein that is strictly required for heme transfer and attachment to CcmE. Site-directed mutagenesis of conserved histidines inactivates the CcmC protein, which is in agreement with the hypothesis that this protein interacts directly with heme. We also present evidence that questions the role of CcmAB as a heme exporter; yet, the transported substrate remains unknown. CcmD was found to be involved in stabilizing the heme chaperone CcmE in the membrane. We propose a heme-trafficking pathway as part of a substantially revised model for cytochrome c maturation in E. coli.
Resumo:
Retinitis pigmentosa (RP) point mutations in both the intradiscal (ID) and transmembrane domains of rhodopsin cause partial or complete misfolding of rhodopsin, resulting in loss of 11-cis-retinal binding. Previous work has shown that misfolding is caused by the formation of a disulfide bond in the ID domain different from the native Cys-110–Cys-187 disulfide bond in native rhodopsin. Here we report on direct identification of the abnormal disulfide bond in misfolded RP mutants in the transmembrane domain by mass spectrometric analysis. This disulfide bond is between Cys-185 and Cys-187, the same as previously identified in misfolded RP mutations in the ID domain. The strategy described here should be generally applicable to identification of disulfide bonds in other integral membrane proteins.
Resumo:
This article reviews recent studies of memory systems in humans and nonhuman primates. Three major conclusions from recent work are that (i) the capacity for nondeclarative (nonconscious) learning can now be studied in a broad array of tasks that assess classification learning, perceptuomotor skill learning, artificial grammar learning, and prototype abstraction; (ii) cortical areas adjacent to the hippocampal formation, including entorhinal, perirhinal, and parahippocampal cortices, are an essential part of the medial temporal lobe memory system that supports declarative (conscious) memory; and (iii) in humans, bilateral damage limited to the hippocampal formation is nevertheless sufficient to produce severe anterograde amnesia and temporally graded retrograde amnesia covering as much as 25 years.
Resumo:
The D2 polypeptide of the photosystem II (PSII) complex in the green alga Chlamydomonas reinhardtii is thought to be reversibly phosphorylated. By analogy to higher plants, the phosphorylation site is likely to be at residue threonine-2 (Thr-2). We have investigated the role of D2 phosphorylation by constructing two mutants in which residue Thr-2 has been replaced by either alanine or serine. Both mutants grew photoautotrophically at wild-type rates, and noninvasive biophysical measurements, including the decay of chlorophyll fluorescence, the peak temperature of thermoluminescence bands, and rates of oxygen evolution, indicate little perturbation to electron transfer through the PSII complex. The susceptibility of mutant PSII to photoinactivation as measured by the light-induced loss of PSII activity in whole cells in the presence of the protein-synthesis inhibitors chloramphenicol or lincomycin was similar to that of wild type. These results indicate that phosphorylation at Thr-2 is not required for PSII function or for protection from photoinactivation. In control experiments the phosphorylation of D2 in wild-type C. reinhardtii was examined by 32P labeling in vivo and in vitro. No evidence for the phosphorylation of D2 in the wild type could be obtained. [14C]Acetate-labeling experiments in the presence of an inhibitor of cytoplasmic protein synthesis also failed to identify phosphorylated (D2.1) and nonphosphorylated (D2.2) forms of D2 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results suggest that the existence of D2 phosphorylation in C. reinhardtii is still in question.
Resumo:
We investigated the relationship between nonphotochemical plastoquinone reduction and chlororespiration in leaves of growth-chamber-grown sunflower (Helianthus annuus L.). Following a short induction period, leaves of previously illuminated sunflower showed a substantially increased level of minimal fluorescence following a light-to-dark transition. This increase in minimal fluorescence was reversed by far-red illumination, inhibited by rotenone or photooxidative methyl viologen treatment, and stimulated by fumigation with CO. Using flash-induced electrochromic absorption-change measurements, we observed that the capacity of sunflower to reduce plastoquinone in the dark influenced the activation state of the chloroplast ATP synthase, although chlororespiratory transmembrane electrochemical potential formation alone does not fully explain our observations. We have added several important new observations to the work of others, forming, to our knowledge, the first strong experimental evidence that chlororespiratory, nonphotochemical plastoquinone reduction and plastoquinol oxidation occur in the chloroplasts of higher plants. We have introduced procedures for monitoring and manipulating chlorores-piratory activity in leaves that will be important in subsequent work aimed at defining the pathway and function of this dark electron flux in higher plant chloroplasts.
Resumo:
Bovine heart cytochrome c oxidase is an electron-current driven proton pump. To investigate the mechanism by which this pump operates it is important to study individual electron- and proton-transfer reactions in the enzyme, and key reactions in which they are kinetically and thermodynamically coupled. In this work, we have simultaneously measured absorbance changes associated with electron-transfer reactions and conductance changes associated with protonation reactions following pulsed illumination of the photolabile complex of partly reduced bovine cytochrome c oxidase and carbon monoxide. Following CO dissociation, several kinetic phases in the absorbance changes were observed with time constants ranging from approximately 3 microseconds to several milliseconds, reflecting internal electron-transfer reactions within the enzyme. The data show that the rate of one of these electron-transfer reactions, from cytochrome a3 to a on a millisecond time scale, is controlled by a proton-transfer reaction. These results are discussed in terms of a model in which cytochrome a3 interacts electrostatically with a protonatable group, L, in the vicinity of the binuclear center, in equilibrium with the bulk through a proton-conducting pathway, which determines the rate of proton transfer (and indirectly also of electron transfer). The interaction energy of cytochrome a3 with L was determined independently from the pH dependence of the extent of the millisecond-electron transfer and the number of protons released, as determined from the conductance measurements. The magnitude of the interaction energy, 70 meV (1 eV = 1.602 x 10(-19) J), is consistent with a distance of 5-10 A between cytochrome a3 and L. Based on the recently determined high-resolution x-ray structures of bovine and a bacterial cytochrome c oxidase, possible candidates for L and a physiological role for L are discussed.
Resumo:
A characteristic feature of all myosins is the presence of two sequences which despite considerable variations in length and composition can be aligned with loops 1 (residues 204-216) and 2 (residues 627-646) in the chicken myosin-head heavy chain sequence. Recently, an intriguing hypothesis has been put forth suggesting that diverse performances of myosin motors are achieved through variations in the sequences of loops 1 and 2 [Spudich, J. (1994) Nature (London) 372, 515-518]. Here, we report on the study of the effects of tryptic digestion of these loops on the motor and enzymatic functions of myosin. Tryptic digestions of myosin, which produced heavy meromyosin (HMM) with different percentages of molecules cleaved at both loop 1 and loop 2, resulted in the consistent decrease in the sliding velocity of actin filaments over HMM in the in vitro motility assays, did not affect the Vmax, and increased the Km values for actin-activated ATPase of HMM. Selective cleavage of loop 2 on HMM decreased its affinity for actin but did not change the sliding velocity of actin in the in vitro motility assays. The cleavage of loop 1 and HMM decreased the mean sliding velocity of actin in such assays by almost 50% but did not alter its affinity for HMM. To test for a possible kinetic determinant of the change in motility, 1-N6-ethenoadenosine diphosphate (epsilon-ADP) release from cleaved and uncleaved myosin subfragment 1 (S1) was examined. Tryptic digestion of loop 1 slightly accelerated the release of epsilon-ADP from S1 but did not affect the rate of epsilon-ADP release from acto-S1 complex. Overall, the results of this work support the hypothesis that loop 1 can modulate the motor function of myosin and suggest that such modulation involves a mechanism other than regulation of ADP release from myosin.