982 resultados para wavelet packet decomposition
Resumo:
This paper investigates the application of the Hilbert spectrum (HS), which is a recent tool for the analysis of nonlinear and nonstationary time-series, to the study of electromyographic (EMG) signals. The HS allows for the visualization of the energy of signals through a joint time-frequency representation. In this work we illustrate the use of the HS in two distinct applications. The first is for feature extraction from EMG signals. Our results showed that the instantaneous mean frequency (IMNF) estimated from the HS is a relevant feature to clinical practice. We found that the median of the IMNF reduces when the force level of the muscle contraction increases. In the second application we investigated the use of the HS for detection of motor unit action potentials (MUAPs). The detection of MUAPs is a basic step in EMG decomposition tools, which provide relevant information about the neuromuscular system through the morphology and firing time of MUAPs. We compared, visually, how MUAP activity is perceived on the HS with visualizations provided by some traditional (e.g. scalogram, spectrogram, Wigner-Ville) time-frequency distributions. Furthermore, an alternative visualization to the HS, for detection of MUAPs, is proposed and compared to a similar approach based on the continuous wavelet transform (CWT). Our results showed that both the proposed technique and the CWT allowed for a clear visualization of MUAP activity on the time-frequency distributions, whereas results obtained with the HS were the most difficult to interpret as they were extremely affected by spurious energy activity. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
This work analyzes the use of linear discriminant models, multi-layer perceptron neural networks and wavelet networks for corporate financial distress prediction. Although simple and easy to interpret, linear models require statistical assumptions that may be unrealistic. Neural networks are able to discriminate patterns that are not linearly separable, but the large number of parameters involved in a neural model often causes generalization problems. Wavelet networks are classification models that implement nonlinear discriminant surfaces as the superposition of dilated and translated versions of a single "mother wavelet" function. In this paper, an algorithm is proposed to select dilation and translation parameters that yield a wavelet network classifier with good parsimony characteristics. The models are compared in a case study involving failed and continuing British firms in the period 1997-2000. Problems associated with over-parameterized neural networks are illustrated and the Optimal Brain Damage pruning technique is employed to obtain a parsimonious neural model. The results, supported by a re-sampling study, show that both neural and wavelet networks may be a valid alternative to classical linear discriminant models.
Resumo:
Tremor is a clinical feature characterized by oscillations of a part of the body. The detection and study of tremor is an important step in investigations seeking to explain underlying control strategies of the central nervous system under natural (or physiological) and pathological conditions. It is well established that tremorous activity is composed of deterministic and stochastic components. For this reason, the use of digital signal processing techniques (DSP) which take into account the nonlinearity and nonstationarity of such signals may bring new information into the signal analysis which is often obscured by traditional linear techniques (e.g. Fourier analysis). In this context, this paper introduces the application of the empirical mode decomposition (EMD) and Hilbert spectrum (HS), which are relatively new DSP techniques for the analysis of nonlinear and nonstationary time-series, for the study of tremor. Our results, obtained from the analysis of experimental signals collected from 31 patients with different neurological conditions, showed that the EMD could automatically decompose acquired signals into basic components, called intrinsic mode functions (IMFs), representing tremorous and voluntary activity. The identification of a physical meaning for IMFs in the context of tremor analysis suggests an alternative and new way of detecting tremorous activity. These results may be relevant for those applications requiring automatic detection of tremor. Furthermore, the energy of IMFs was visualized as a function of time and frequency by means of the HS. This analysis showed that the variation of energy of tremorous and voluntary activity could be distinguished and characterized on the HS. Such results may be relevant for those applications aiming to identify neurological disorders. In general, both the HS and EMD demonstrated to be very useful to perform objective analysis of any kind of tremor and can therefore be potentially used to perform functional assessment.
Resumo:
The usefulness of motor subtypes of delirium is unclear due to inconsistency in subtyping methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured over 24 h with a discrete accelerometer-based activity monitor. The continuous wavelet transform (CWT) with various mother wavelets were applied to accelerometry data from three randomly selected patients with DSM-IV delirium that were readily divided into hyperactive, hypoactive, and mixed motor subtypes. A classification tree used the periods of overall movement as measured by the discrete accelerometer-based monitor as determining factors for which to classify these delirious patients. This data used to create the classification tree were based upon the minimum, maximum, standard deviation, and number of coefficient values, generated over a range of scales by the CWT. The classification tree was subsequently used to define the remaining motoric subtypes. The use of a classification system shows how delirium subtypes can be categorized in relation to overall motoric behavior. The classification system was also implemented to successfully define other patient motoric subtypes. Motor subtypes of delirium defined by observed ward behavior differ in electronically measured activity levels.
Resumo:
A quasi-optical deembedding technique for characterizing waveguides is demonstrated using wide-band time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time-domain responses were discretized and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an AutoRegressive with eXogenous input (ARX), as well as with a state-space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize both signal distortion, as well as the noise propagating in the ARX and subspace models. The optimal filtering procedure used in the wavelet domain for the recorded time-domain signatures is described in detail. The effect of filtering prior to the identification procedures is elucidated with the aid of pole-zero diagrams. Models derived from measurements of terahertz transients in a precision WR-8 waveguide adjustable short are presented.
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
Transient neural assemblies mediated by synchrony in particular frequency ranges are thought to underlie cognition. We propose a new approach to their detection, using empirical mode decomposition (EMD), a data-driven approach removing the need for arbitrary bandpass filter cut-offs. Phase locking is sought between modes. We explore the features of EMD, including making a quantitative assessment of its ability to preserve phase content of signals, and proceed to develop a statistical framework with which to assess synchrony episodes. Furthermore, we propose a new approach to ensure signal decomposition using EMD. We adapt the Hilbert spectrum to a time-frequency representation of phase locking and are able to locate synchrony successfully in time and frequency between synthetic signals reminiscent of EEG. We compare our approach, which we call EMD phase locking analysis (EMDPL) with existing methods and show it to offer improved time-frequency localisation of synchrony.
Resumo:
Transient episodes of synchronisation of neuronal activity in particular frequency ranges are thought to underlie cognition. Empirical mode decomposition phase locking (EMDPL) analysis is a method for determining the frequency and timing of phase synchrony that is adaptive to intrinsic oscillations within data, alleviating the need for arbitrary bandpass filter cut-off selection. It is extended here to address the choice of reference electrode and removal of spurious synchrony resulting from volume conduction. Spline Laplacian transformation and independent component analysis (ICA) are performed as pre-processing steps, and preservation of phase synchrony between synthetic signals. combined using a simple forward model, is demonstrated. The method is contrasted with use of bandpass filtering following the same preprocessing steps, and filter cut-offs are shown to influence synchrony detection markedly. Furthermore, an approach to the assessment of multiple EEG trials using the method is introduced, and the assessment of statistical significance of phase locking episodes is extended to render it adaptive to local phase synchrony levels. EMDPL is validated in the analysis of real EEG data, during finger tapping. The time course of event-related (de)synchronisation (ERD/ERS) is shown to differ from that of longer range phase locking episodes, implying different roles for these different types of synchronisation. It is suggested that the increase in phase locking which occurs just prior to movement, coinciding with a reduction in power (or ERD) may result from selection of the neural assembly relevant to the particular movement. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined - the classi. cation of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classi. cation, a simple Mahalanobis distance classi. er is used. After feature extraction, classi. cation accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.