930 resultados para waveguide tapers
Resumo:
A Coplanar waveguide fed compact planar monopole antenna with a modified ground plane is presented. Measured and simulated results reveal that the antenna operates in the Ultra Wide Band with almost constant group delay throughout the band. Developed design equations of the antenna are validated for different substrates. Time domain performance of the antenna is also discussed in order to assess its suitability for impulse radio applications
Resumo:
A compact coplanar waveguide (CPW) fed uniplanar antenna for Quad-band applications is presented. The Quad-band operation is realized by imposing various current paths in a modified T-shaped radiating element. The antenna covers GSM 900, DCS 1800, IEEE802.11.a, IEEE802.11.b and HiperLAN-2 bands and exhibits good radiation characteristics. This low profile antenna has a dimension of 32mm×31mmwhen printed on a substrate of dielectric constant 4.4 and height 1.6mm. Details of design with experimental and simulated results are presented
Resumo:
High-speed semiconductor lasers are an integral part in the implemen- tation of high-bit-rate optical communications systems. They are com- pact, rugged, reliable, long-lived, and relatively inexpensive sources of coherent light. Due to the very low attenuation window that exists in the silica based optical fiber at 1.55 μm and the zero dispersion point at 1.3 μm, they have become the mainstay of optical fiber com- munication systems. For the fabrication of lasers with gratings such as, distributed bragg reflector or distributed feedback lasers, etching is the most critical step. Etching defines the lateral dimmensions of the structure which determines the performance of optoelectronic devices. In this thesis studies and experiments were carried out about the exist- ing etching processes for InP and a novel dry etching process was de- veloped. The newly developed process was based on Cl2/CH4/H2/Ar chemistry and resulted in very smooth surfaces and vertical side walls. With this process the grating definition was significantly improved as compared to other technological developments in the respective field. A surface defined grating definition approach is used in this thesis work which does not require any re-growth steps and makes the whole fabrication process simpler and cost effective. Moreover, this grating fabrication process is fully compatible with nano-imprint lithography and can be used for high throughput low-cost manufacturing. With usual etching techniques reported before it is not possible to etch very deep because of aspect ratio dependent etching phenomenon where with increasing etch depth the etch rate slows down resulting in non-vertical side walls and footing effects. Although with our de- veloped process quite vertical side walls were achieved but footing was still a problem. To overcome the challenges related to grating defini- tion and deep etching, a completely new three step gas chopping dry etching process was developed. This was the very first time that a time multiplexed etching process for an InP based material system was demonstrated. The developed gas chopping process showed extra ordinary results including high mask selectivity of 15, moderate etch- ing rate, very vertical side walls and a record high aspect ratio of 41. Both the developed etching processes are completely compatible with nano imprint lithography and can be used for low-cost high-throughput fabrication. A large number of broad area laser, ridge waveguide laser, distributed feedback laser, distributed bragg reflector laser and coupled cavity in- jection grating lasers were fabricated using the developed one step etch- ing process. Very extensive characterization was done to optimize all the important design and fabrication parameters. The devices devel- oped have shown excellent performance with a very high side mode suppression ratio of more than 52 dB, an output power of 17 mW per facet, high efficiency of 0.15 W/A, stable operation over temperature and injected currents and a threshold current as low as 30 mA for almost 1 mm long device. A record high modulation bandwidth of 15 GHz with electron-photon resonance and open eye diagrams for 10 Gbps data transmission were also shown.
Resumo:
In this work investigation of the QDs formation and the fabrication of QD based semiconductor lasers for telecom applications are presented. InAs QDs grown on AlGaInAs lattice matched to InP substrates are used to fabricate lasers operating at 1.55 µm, which is the central wavelength for far distance data transmission. This wavelength is used due to its minimum attenuation in standard glass fibers. The incorporation of QDs in this material system is more complicated in comparison to InAs QDs in the GaAs system. Due to smaller lattice mismatch the formation of circular QDs, elongated QDs and quantum wires is possible. The influence of the different growth conditions, such as the growth temperature, beam equivalent pressure, amount of deposited material on the formation of the QDs is investigated. It was already demonstrated that the formation process of QDs can be changed by the arsenic species. The formation of more round shaped QDs was observed during the growth of QDs with As2, while for As4 dash-like QDs. In this work only As2 was used for the QD growth. Different growth parameters were investigated to optimize the optical properties, like photoluminescence linewidth, and to implement those QD ensembles into laser structures as active medium. By the implementation of those QDs into laser structures a full width at half maximum (FWHM) of 30 meV was achieved. Another part of the research includes the investigation of the influence of the layer design of lasers on its lasing properties. QD lasers were demonstrated with a modal gain of more than 10 cm-1 per QD layer. Another achievement is the large signal modulation with a maximum data rate of 15 Gbit/s. The implementation of optimized QDs in the laser structure allows to increase the modal gain up to 12 cm-1 per QD layer. A reduction of the waveguide layer thickness leads to a shorter transport time of the carriers into the active region and as a result a data rate up to 22 Gbit/s was achieved, which is so far the highest digital modulation rate obtained with any 1.55 µm QD laser. The implementation of etch stop layers into the laser structure provide the possibility to fabricate feedback gratings with well defined geometries for the realization of DFB lasers. These DFB lasers were fabricated by using a combination of dry and wet etching. Single mode operation at 1.55 µm with a high side mode suppression ratio of 50 dB was achieved.
Resumo:
The aim of the thesis is to theoretically investigate optical/plasmonic antennas for biosensing applications. The full 3-D numerical electromagnetic simulations have been performed by using finite integration technique (FIT). The electromagnetic properties of surface plasmon polaritons (SPPs) and the localized surface plasmons (LSPs) based devices are studied for sensing purpose. The surface plasmon resonance (SPR) biosensors offer high refractive index sensitivity at a fixed wavelength but are not enough for the detection of low concentrations of molecules. It has been demonstrated that the sensitivity of SPR sensors can be increased by employing the transverse magneto-optic Kerr effect (TMOKE) in combination with SPPs. The sensor based on the phenomena of TMOKE and SPPs are known as magneto-optic SPR (MOSPR) sensors. The optimized MOSPR sensor is analyzed which provides 8 times higher sensitivity than the SPR sensor, which will be able to detect lower concentration of molecules. But, the range of the refractive index detection is limited, due to the rapid decay of the amplitude of the MOSPR-signal with the increase of the refractive indices. Whereas, LSPs based sensors can detect lower concentrations of molecules, but their sensitivity is small at a fixed wavelength. Therefore, another device configuration known as perfect plasmonic absorber (PPA) is investigated which is based on the phenomena of metal-insulator-metal (MIM) waveguide. The PPA consists of a periodic array of gold nanoparticles and a thick gold film separated by a dielectric spacer. The electromagnetic modes of the PPA system are analyzed for sensing purpose. The second order mode of the PPA at a fixed wavelength has been proposed for the first time for biosensing applications. The PPA based sensor combines the properties of the LSPR sensor and the SPR sensor, for example, it illustrates increment in sensitivity of the LSPR sensor comparable to the SPR and can detect lower concentration of molecules due to the presence of nanoparticles.
Resumo:
For the tracking of extrema associated with weather systems to be applied to a broad range of fields it is necessary to remove a background field that represents the slowly varying, large spatial scales. The sensitivity of the tracking analysis to the form of background field removed is explored for the Northern Hemisphere winter storm tracks for three contrasting fields from an integration of the U. K. Met Office's (UKMO) Hadley Centre Climate Model (HadAM3). Several methods are explored for the removal of a background field from the simple subtraction of the climatology, to the more sophisticated removal of the planetary scales. Two temporal filters are also considered in the form of a 2-6-day Lanczos filter and a 20-day high-pass Fourier filter. The analysis indicates that the simple subtraction of the climatology tends to change the nature of the systems to the extent that there is a redistribution of the systems relative to the climatological background resulting in very similar statistical distributions for both positive and negative anomalies. The optimal planetary wave filter removes total wavenumbers less than or equal to a number in the range 5-7, resulting in distributions more easily related to particular types of weather system. For the temporal filters the 2-6-day bandpass filter is found to have a detrimental impact on the individual weather systems, resulting in the storm tracks having a weak waveguide type of behavior. The 20-day high-pass temporal filter is less aggressive than the 2-6-day filter and produces results falling between those of the climatological and 2-6-day filters.
Resumo:
We propose a mechanism to explain suggested links between seismic activity and ionospheric changes detected overhead. Specifically, we explain changes in the natural extremely low-frequency (ELF) radio noise recently observed in the topside ionosphere aboard the DEMETER satellite at night, before major earthquakes. Our mechanism utilises increased electrical conductivity of surface layer air before a major earthquake, which reduces the surface-ionosphere electrical resistance. This increases the vertical fair weather current, and (to maintain continuity of electron flow) lowers the ionosphere. Magnitudes of crucial parameters are estimated and found to be consistent with observations. Natural variability in ionospheric and atmospheric electrical properties is evaluated, and may be overcome using a hybrid detection approach. Suggested experiments to investigate the mechanism involve measuring the cut-off frequency of ELF “tweeks”, the amplitude and phase of very low frequency radio waves in the Earth–ionosphere waveguide, or medium frequency radar, incoherent scatter or rocket studies of the lower ionospheric electron density.
Resumo:
A quasi-optical technique for characterizing micromachined waveguides is demonstrated with wideband time-resolved terahertz spectroscopy. A transfer-function representation is adopted for the description of the relation between the signals in the input and output port of the waveguides. The time-domain responses were discretized, and the waveguide transfer function was obtained through a parametric approach in the z domain after describing the system with an autoregressive with exogenous input model. The a priori assumption of the number of modes propagating in the structure was inferred from comparisons of the theoretical with the measured characteristic impedance as well as with parsimony arguments. Measurements for a precision WR-8 waveguide-adjustable short as well as for G-band reduced-height micromachined waveguides are presented. (C) 2003 Optical Society of America.
Resumo:
An aquaplanet model is used to study the nature of the highly persistent low-frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, the authors find that a quasi-stationary wave 5 belongs to a wave packet obeying a well-defined dispersion relation with eastward group velocity. The components of the dispersion relation with k ≥ 5 baroclinically convert eddy available potential energy into eddy kinetic energy, whereas those with k < 5 are baroclinically neutral. In agreement with Green’s model of baroclinic instability, wave 5 is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of wave, only acts as a positive feedback on its predominantly baroclinic energetics. The quasi-stationary wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. It is also found that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave’s energy is then trapped in the waveguide created by the upper tropospheric jet stream. In agreement with Green’s theory, as the equator-to-pole SST difference is reduced, the stationary marginally stable component shifts toward higher wavenumbers, while wave 5 becomes neutral and westward propagating. Some properties of the aquaplanet quasi-stationary waves are found to be in interesting agreement with a low frequency wave observed by Salby during December–February in the Southern Hemisphere so that this perspective on low frequency variability, apart from its value in terms of basic geophysical fluid dynamics, might be of specific interest for studying the earth’s atmosphere.
Resumo:
Schottky barrier diodes have been integrated into on-chip rectangular waveguides. Two novel techniques have been developed to fabricate diodes with posts suitable for integration into waveguides. One technique produces diodes with anode diameters of the order of microns with post heights from 90 to 125 microns and the second technique produces sub-micron anodes with post heights around 20 microns. A method has been developed to incorporate these structures into a rectangular waveguide and provide a top contact onto the anode which could be used as an I.F. output in a mixer circuit. Devices have been fabricated and D.C. characterized.
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band.
Resumo:
The aim of this preliminary work was to present a novel method, suitable to investigate the glass cooling, from melt to solid state, based on a fast, non-usual and easy microwave method. The following glass system xBaO . (100-x)B(2)O(3) (x = 0% and 40%) was selected as an example for this study. The melt was poured inside a piece of waveguide and then, its cooling was monitored by the microwave signal as a function of time. The variations in the signal can provide valuable informations about some structural changes that take place during the cooling stages, such as relaxation processes. This method can be useful to investigate the cooling and heating of other materials, opening new possibilities for investigation of dielectric behavior of materials under high temperatures. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This paper presents the characterization of single-mode waveguides for 980 and 1550 nm wavelengths. High quality planar waveguide structure was fabricated from Y(1-x)Er(x)Al(3)(BO(3))(4) multilayer thin films with x = 0.02, 0.05, 0.1, 0.3, and 0.5, prepared through the polymeric precursor and sol-gel methods using spin-coating. The propagation losses of the planar waveguides varying from 0.63 to 0.88 dB/cm were measured at 632.8 and 1550 nm. The photoluminescence spectra and radiative lifetimes of the Er(3+) (4)I(13/2) energy level were measured in waveguiding geometry. For most samples the photoluminescence decay was single exponential with lifetimes in between 640 mu s and 200 mu s, depending on the erbium concentration and synthesis method. These results indicate that Er doped YAl(3)(BO(3))(4) compounds are promising for low loss waveguides. (C) 2009 Elsevier B.V. All fights reserved.
Resumo:
The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the mu g m(-3) range) and their variations with sampling site and time In this work a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE) a quick separation technique that requires nothing more than some nanoliters of sample and when combined with capacitively coupled contactless conductometric detection (C(4)D) is particularly favorable for ionic species that do not absorb in the UV-vis region like the target analytes formaldehyde formic acid acetic acid and ammonium The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry s constant such as formaldehyde and carboxylic acids or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8 3 nLs(-1)) while the sample was aspirated through the annular gap of the concentric tubes at 25 mLs(-1) A second unit in all similar to the CMDS was operated as a capillary membrane diffusion emitter (CMDE) generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS The fluids of the system were driven with inexpensive aquarium air pumps and the collected samples were stored in vials cooled by a Peltier element Complete protocols were developed for the analysis in air of NH(3) CH(3)COOH HCOOH and with a derivatization setup CH(2)O by associating the CMDS collection with the determination by CE-C(4)D The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot s reaction Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW) All techniques and methods of this work are in line with the green analytical chemistry trends (C) 2010 Elsevier B V All rights reserved