927 resultados para visible light spectrophotometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light scattering, or scattering and absorption of electromagnetic waves, is an important tool in all remote-sensing observations. In astronomy, the light scattered or absorbed by a distant object can be the only source of information. In Solar-system studies, the light-scattering methods are employed when interpreting observations of atmosphereless bodies such as asteroids, atmospheres of planets, and cometary or interplanetary dust. Our Earth is constantly monitored from artificial satellites at different wavelengths. With remote sensing of Earth the light-scattering methods are not the only source of information: there is always the possibility to make in situ measurements. The satellite-based remote sensing is, however, superior in the sense of speed and coverage if only the scattered signal can be reliably interpreted. The optical properties of many industrial products play a key role in their quality. Especially for products such as paint and paper, the ability to obscure the background and to reflect light is of utmost importance. High-grade papers are evaluated based on their brightness, opacity, color, and gloss. In product development, there is a need for computer-based simulation methods that could predict the optical properties and, therefore, could be used in optimizing the quality while reducing the material costs. With paper, for instance, pilot experiments with an actual paper machine can be very time- and resource-consuming. The light-scattering methods presented in this thesis solve rigorously the interaction of light and material with wavelength-scale structures. These methods are computationally demanding, thus the speed and accuracy of the methods play a key role. Different implementations of the discrete-dipole approximation are compared in the thesis and the results provide practical guidelines in choosing a suitable code. In addition, a novel method is presented for the numerical computations of orientation-averaged light-scattering properties of a particle, and the method is compared against existing techniques. Simulation of light scattering for various targets and the possible problems arising from the finite size of the model target are discussed in the thesis. Scattering by single particles and small clusters is considered, as well as scattering in particulate media, and scattering in continuous media with porosity or surface roughness. Various techniques for modeling the scattering media are presented and the results are applied to optimizing the structure of paper. However, the same methods can be applied in light-scattering studies of Solar-system regoliths or cometary dust, or in any remote-sensing problem involving light scattering in random media with wavelength-scale structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of methyl ester of 3-oxo-indan-5-acetic acid (3), an analogue of the natura1 product pterosin-E (4), starting from cyclopentadiene (1) and p-benzoquinone (2) using a sequence of six ground and excited state reactions, is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The outer atmosphere of the sun called the corona has been observed during total solar eclipse for short periods (typically <6 min), from as early as the eighteenth century. In the recent past, space-based instruments have permitted us to study the corona uninterruptedly. In spite of these developments, the dynamic corona and its high temperature (1-2 million K) are yet to be Ally understood. It is conjectured that their dynamic nature and associated energetic events are possible reasons behind the high temperature. In order to study these in detail, a visible emission line space solar coronagraph is being proposed as a payload under the small-satellite programme of the Indian Space Research Organisation. The satellite is named as Aditya-1 and the scientific objectives of this payload are to study: (i) the existence of intensity oscillations for the study of wave-driven coronal heating; (ii) the dynamics and formation of coronal loops and temperature structure of the coronal features; (iii) the origin, cause and acceleration of coronal mass ejections (CMEs) and other solar active features, and (iv) coronal magnetic field topology and three-dimensional structures of CMEs using polarization information. The uniqueness of this payload compared to previously flown space instruments is as follows: (a) observations in the visible wavelength closer to the disk (down to 1.05 solar radii); (b) high time cadence capability (better than two-images per second), and (c) simultaneous observations of at least two spectral windows all the time and three spectral windows for short durations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive and analyze the statistics of reflection coefficient of light backscattered coherently from an amplifying and disordered optical medium modeled by a spatially random refractive index having a uniform imaginary part in one dimension. We find enhancement of reflected intensity owing to a synergy between wave confinement by Anderson localization and coherent amplification by the active medium. This is not the same as that due to enhanced optical path lengths expected from photon diffusion in the random active medium. Our study is relevant to the physical realizability of a mirrorless laser by photon confinement due to Anderson localization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT), EC 2.1.2.1, exhibits broad substrate and reaction specificity. In addition to cleaving many 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzed the decarboxylation, transamination and racemization of several substrate analogues of amino acids. To elucidate the mechanism of interaction of substrates, especially L-serine with the enzyme, a comparative study of interaction of L-serine with the enzyme from sheep liver and Escherichia coli, was carried out. The heat stability of both the enzymes was enhanced in the presence of serine, although to different extents. Thermal denaturation monitored by spectral changes indicated an alteration in the apparent T, of sheep liver and E. coli SHMTs from 55 +/- 1 degrees C to 72 +/- 3 degrees C at 40 mM serine and from 67 +/- 1 degrees C to 72 +/- 1 degrees C at 20 mM serine, respectively. Using stopped flow spectrophotometry k values of (49 +/- 5)(.)10(-3) s(-1) and (69 +/- 7).10(-3) s(-1) for sheep liver and E. coli enzymes were determined at 50 mM serine. The binding of serine monitored by intrinsic fluorescence and sedimentation velocity measurements indicated that there was no generalized change in the structure of both proteins. However, visible CD measurements indicated a change in the asymmetric environment of pyridoxal 5'-phosphate at the active site upon binding of serine to both the enzymes. The formation of an external aldimine was accompanied by a change in the secondary structure of the enzymes monitored by far UV-CD spectra. Titration microcalorimetric studies in the presence of serine (8 mM) also demonstrated a single class of binding and the conformational changes accompanying the binding of serine to the enzyme resulted in a more compact structure leading to increased thermal stability of the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the different models proposed to explain the visible luminescence in porous silicon (PS). We review our recent photoluminescence and Raman studies on PS as a function of different preparation conditions and isochronal thermal annealing. Our results can be explained by a hybrid model which incorporates both nanostructures for quantum confinement and silicon complexes (such as SiHx, and siloxene) and defects at Si/SiO2, interfaces as luminescent centres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the theoretical treatments of the dynamics of solvation of a newly created ion in a dipolar solvent, the self-motion of the solute is usually ignored. Recently, it has been shown that for a light ion the translational motion of the ion can significantly enhance its own rate of solvation. Therefore, solvation itself may not be the rate determining step in the equilibration. Instead, the rate determining step is the search of the low energy configuration which serves to localize the light ion. In this article a microscopic calculation of the probability distribution of the interaction energy of the nascent charge with the dipolar solvent molecules is presented in order to address this problem of solute trapping. It is found that to a good approximation, this distribution is Gaussian and the second moment of this distribution is exactly equal to the half of its own solvation energy. It is shown that this is in excellent agreement with the simulation results that are available for the model Brownian dipolar lattice and for liquid acetonitrile. If the distortion of the solvent by the ion is negligible then the same relation gives the energy distribution for the solvated ion, with the average centered at the final equilibrium solvation energy. These results are expected to be useful in understanding various chemical processes in dipolar liquids. Another interesting outcome of the present study is a simple dynamic argument that supports Onsager's ''inverse snow-ball'' conjecture of solvation of a light ion. A simple derivation of the semi-phenomenological relation between the solvation time correlation function and the single particle orientation, reported recently by Maroncelli et al. (J. Phys. Chem. 97 (1993) 13), is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let G be an undirected graph with a positive real weight on each edge. It is shown that the number of minimum-weight cycles of G is bounded above by a polynomial in the number of edges of G. A similar bound holds if we wish to count the number of cycles with weight at most a constant multiple of the minimum weight of a cycle of G.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple route for tailoring emissions in the visible wavelength region by chemically coupling quantum dots composed of ZnSe and CdS is reported. coupled quantum dots offer a novel route for tuning electronic transitions via band-offset engineering at the material interface. This novel class of asymmetric. coupled quantum structures may offer a basis for a diverse set of building blocks for optoelectronic devices, ultrahigh density memories, and quantum information processing.