965 resultados para vertical drains
Resumo:
The purpose of the study was to analyse longitudinal vertical facial and dentoalveolar changes using panoramic radiographs (PRs) and to compare the results with measurements on lateral cephalometric radiographs (LCRs) in order to determine whether, under certain circumstances, the radiation dose for a patient may be reduced by taking only a PR instead of a PR and a LCR. Pre- and post-treatment PRs and LCRs of 30 (15 females and 15 males) orthodontically treated adolescents (mean age pre-treatment 10.9 years, post-treatment 13.4 years) were analysed using Pearson's correlation coefficients and gender differences using Fisher's z-transformation. The results revealed that most variables exhibited larger absolute values on PRs than on LCRs. Comparison of dentoskeletal morphology between the LCRs and the PRs revealed moderate to high, mostly statistically significant, interrelations both before and after orthodontic treatment. The lowest correlations were found for the maxillary jaw base angle (NL/H; r= 0.35***) and the highest for the gonial angle (ML/RL; r = 0.90***). However, when assessing the combined growth and treatment changes from before to after treatment, only weak to moderate, not statistically significant, interrelations were found between LCRs and PRs. Anterior face height (AFH; r = 0.43***), the mandibular plane angle (ML/H; r = 0.06*), and the distance of the incisal tip of the most extruded mandibular incisor to the ML-line (ii-ML; r = -0.21*) were the only statistically significant parameters. The average group differences for growth and treatment changes, however, were small for most parameters. Analysis of vertical facial and dentoalveolar parameters on PRs delivers a moderate approximation to the situation depicted on LCRs. However, PRs cannot be recommended for the analysis of individual longitudinal changes in vertical facial and dentoalveolar parameters.
Resumo:
This doctoral thesis presents the experimental results along with a suitable synthesis with computational/theoretical results towards development of a reliable heat transfer correlation for a specific annular condensation flow regime inside a vertical tube. For fully condensing flows of pure vapor (FC-72) inside a vertical cylindrical tube of 6.6 mm diameter and 0.7 m length, the experimental measurements are shown to yield values of average heat transfer co-efficient, and approximate length of full condensation. The experimental conditions cover: mass flux G over a range of 2.9 kg/m2-s ≤ G ≤ 87.7 kg/m2-s, temperature difference ∆T (saturation temperature at the inlet pressure minus the mean condensing surface temperature) of 5 ºC to 45 ºC, and cases for which the length of full condensation xFC is in the range of 0 < xFC < 0.7 m. The range of flow conditions over which there is good agreement (within 15%) with the theory and its modeling assumptions has been identified. Additionally, the ranges of flow conditions for which there are significant discrepancies (between 15 -30% and greater than 30%) with theory have also been identified. The paper also refers to a brief set of key experimental results with regard to sensitivity of the flow to time-varying or quasi-steady (i.e. steady in the mean) impositions of pressure at both the inlet and the outlet. The experimental results support the updated theoretical/computational results that gravity dominated condensing flows do not allow such elliptic impositions.
Resumo:
Water-saturated debris flows are among some of the most destructive mass movements. Their complex nature presents a challenge for quantitative description and modeling. In order to improve understanding of the dynamics of these flows, it is important to seek a simplified dynamic system underlying their behavior. Models currently in use to describe the motion of debris flows employ depth-averaged equations of motion, typically assuming negligible effects from vertical acceleration. However, in many cases debris flows experience significant vertical acceleration as they move across irregular surfaces, and it has been proposed that friction associated with vertical forces and liquefaction merit inclusion in any comprehensive mechanical model. The intent of this work is to determine the effect of vertical acceleration through a series of laboratory experiments designed to simulate debris flows, testing a recent model for debris flows experimentally. In the experiments, a mass of water-saturated sediment is released suddenly from a holding container, and parameters including rate of collapse, pore-fluid pressure, and bed load are monitored. Experiments are simplified to axial geometry so that variables act solely in the vertical dimension. Steady state equations to infer motion of the moving sediment mass are not sufficient to model accurately the independent solid and fluid constituents in these experiments. The model developed in this work more accurately predicts the bed-normal stress of a saturated sediment mass in motion and illustrates the importance of acceleration and deceleration.
Resumo:
Embedded siloxane polymer waveguides have shown promising results for use in optical backplanes. They exhibit high temperature stability, low optical absorption, and require common processing techniques. A challenging aspect of this technology is out-of-plane coupling of the waveguides. A multi-software approach to modeling an optical vertical interconnect (via) is proposed. This approach utilizes the beam propagation method to generate varied modal field distribution structures which are then propagated through a via model using the angular spectrum propagation technique. Simulation results show average losses between 2.5 and 4.5 dB for different initial input conditions. Certain configurations show losses of less than 3 dB and it is shown that in an input/output pair of vias, average losses per via may be lower than the targeted 3 dB.
Resumo:
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the selection of coaster brook trout (a life history variant of Salvelinus fontinalis,) spawning sites. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. Throughout this site, the river is relatively similar along its length with regard to stream channel and substrate features. A monitoring well system consisting of an array of 27 wells was installed to measure subsurface temperatures underneath the riverbed over a 13-month period. The monitoring well locations were separated into areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from 5 depths within each of the 27 monitoring wells. Temperatures within the substrate at the spawning area were generally cooler and less variable than river temperatures. Substrate temperatures in the non-spawning area were generally warmer, more variable, and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated velocities in the spawning and non-spawning areas confirmed that groundwater velocities in the spawning area were primarily in the upward direction, and were generally greater in magnitude than velocities in the non-spawning area. In the non-spawning area there was a greater occurrence of velocities in the downward direction, and velocity estimates were generally lesser in magnitude than in the spawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater influx to the river bed.
Resumo:
We investigated the protective potential of recombinant his-tagged antigens recNcMIC1, recNcMIC3 and recNcROP2, applied either as single vaccines or as vaccine combinations, in BALB/c mouse models for cerebral and fetal infection. Subsequently, mice were mated and challenged by i.p. inoculation of 2 x 10(6)Neospora caninum tachyzoites at day 7 of pregnancy. The mortality and morbidity of adult mice (non-pregnant and dams) and of the newborn pups was studied for a period of 40 days following birth. Vaccination of non-pregnant mice with recNcROP2 or combinations of recNcROP2 with recNcMIC antigens significantly reduced the numbers of mice suffering from clinical signs, and morbidity was completely prevented with the combination of all three antigens. Of the dams, the groups receiving either recNcROP2 alone or the combination of all three antigens did not exhibit any morbidity, the groups receiving ROP2 mixed with either MIC1 or MIC3 exhibited reduced numbers of deaths, and in the infection control group and the adjuvant group 50% and 43% of mice, respectively, succumbed to disease. For pups, the highest survival rates were noted for the groups receiving recNcROP2 (50%) and recNcROP2/NcMIC1/NcMIC3 (35%), while in the infection- and adjuvant- control groups all pups died, the latest at days 25 and 30, respectively. Quantification of parasite DNA by N. caninum-specific real-time PCR revealed consistently lower parasite burdens in brain tissue of pups from vaccinated groups compared with the controls. However, dense granule antigen 2 (GRA2) real-time reverse transcriptase-PCR on brain tissue of surviving pups (applied here to detect viable parasites) demonstrated that only the pups from the group vaccinated with all three antigens in combination appeared free of viable tachyzoites, while in all other groups viable parasites were still present. Serological analysis of humoral (total IgG, IgG1 and IgG2a) and serum cytokine (IL-4 and IFN-gamma) responses showed that this effect was associated with a Th-2-biased immune response, with a clearly elevated IL-4/IFN-gamma ratio in the mice receiving all three antigens in combination. In conclusion, a mixture of recombinant antigens representing important secretory micronemal and rhoptry proteins leads to a significant protection against vertical transmission of N. caninum in mice.
Ambient vertical flow in long-screen wells: a case study in the Fontainebleau Sands Aquifer (France)
Resumo:
Cloud computing is a new development that is based on the premise that data and applications are stored centrally and can be accessed through the Internet. Thisarticle sets up a broad analysis of how the emergence of clouds relates to European competition law, network regulation and electronic commerce regulation, which we relate to challenges for the further development of cloud services in Europe: interoperability and data portability between clouds; issues relating to vertical integration between clouds and Internet Service Providers; and potential problems for clouds to operate on the European Internal Market. We find that these issues are not adequately addressed across the legal frameworks that we analyse, and argue for further research into how to better facilitate innovative convergent services such as cloud computing through European policy – especially in light of the ambitious digital agenda that the European Commission has set out.
Resumo:
Despite the astounding success of the fast fashion retailers, the management practices leading to these results have not been subject to extensive research so far. Given this background, we analyze the impact of information sharing and vertical integration on the performance of 51 German apparel companies. We find that the positive impact of vertical integration is mediated by information sharing, i.e. that the ability to improve the information flow is a key success factor of vertically integrated apparel supply chains. Thus, the success of an expansion strategy based on vertical integration critically depends on effective ways to share logistical information.
Resumo:
Neodymium (Nd) isotopes are an important geochemical tool to trace the present and past water mass mixing as well as continental inputs. The distribution of Nd concentrations in open ocean surface waters (0�100 m) is generally assumed to be controlled by lateral mixing of Nd from coastal surface currents and by removal through reversible particle scavenging. However, using 228Ra activity as an indicator of coastal water mass influence, surface water Nd concentration data available on key oceanic transects as a whole do not support the above scenario. From a global compilation of available data, we find that more stratified regions are generally associated with low surface Nd concentrations. This implies that upper ocean vertical supply may be an as yet neglected primary factor in determining the basin-scale variations of surface water Nd concentrations. Similar to the mechanism of nutrients supply, it is likely that stratification inhibits vertical supply of Nd from the subsurface thermocline waters and thus the magnitude of Nd flux to the surface layer. Consistently, the estimated required input flux of Nd to the surface layer to maintain the observed concentrations could be nearly two orders of magnitudes larger than riverine/dust flux, and also larger than the model-based estimation on shelf-derived coastal flux. In addition, preliminary results from modeling experiments reveal that the input from shallow boundary sources, riverine input, and release from dust are actually not the primary factors controlling Nd concentrations most notably in the Pacific and Southern Ocean surface waters.
Resumo:
When tilted sideways participants misperceive the visual vertical assessed by means of a luminous line in otherwise complete dark- ness. A recent modeling approach (De Vrijer et al., 2009) claimed that these typical patterns of errors (known as A- and E-effects) could be explained by as- suming that participants behave in a Bayes optimal manner. In this study, we experimentally manipulate participants’ prior information about body-in-space orientation and measure the effect of this manipulation on the subjective visual vertical (SVV). Specifically, we explore the effects of veridical and misleading instructions about body tilt orientations on the SVV. We used a psychophys- ical 2AFC SVV task at roll tilt angles of 0 degrees, 16 degrees and 4 degrees CW and CCW. Participants were tilted to 4 degrees under different instruction conditions: in one condition, participants received veridical instructions as to their tilt angle, whereas in another condition, participants received the mis- leading instruction that their body position was perfectly upright. Our results indicate systematic differences between the instruction conditions at 4 degrees CW and CCW. Participants did not simply use an ego-centric reference frame in the misleading condition; instead, participants’ estimates of the SVV seem to lie between their head’s Z-axis and the estimate of the SVV as measured in the veridical condition. All participants displayed A-effects at roll tilt an- gles of 16 degrees CW and CCW. We discuss our results in the context of the Bayesian model by De Vrijer et al. (2009), and claim that this pattern of re- sults is consistent with a manipulation of precision of a prior distribution over body-in-space orientations. Furthermore, we introduce a Bayesian Generalized Linear Model for estimating parameters of participants’ psychometric function, which allows us to jointly estimate group level and individual level parameters under all experimental conditions simultaneously, rather than relying on the traditional two-step approach to obtaining group level parameter estimates.
Resumo:
For a three-dimensional vertically-oriented fault zone, we consider the coupled effects of fluid flow, heat transfer and reactive mass transport, to investigate the patterns of fluid flow, temperature distribution, mineral alteration and chemically induced porosity changes. We show, analytically and numerically, that finger-like convection patterns can arise in a vertically-oriented fault zone. The onset and patterns of convective fluid flow are controlled by the Rayleigh number which is a function of the thermal properties of the fluid and the rock, the vertical temperature gradient, and the height and the permeability of the fault zone. Vigorous fluid flow causes low temperature gradients over a large region of the fault zone. In such a case, flow across lithological interfaces becomes the most important mechanism for the formation of sharp chemical reaction fronts. The degree of rock buffering, the extent and intensity of alteration, the alteration mineralogy and in some cases the formation of ore deposits are controlled by the magnitude of the flow velocity across these compositional interfaces in the rock. This indicates that alteration patterns along compositional boundaries in the rock may provide some insights into the convection pattern. The advective mass and heat exchanges between the fault zone and the wallrock depend on the permeability contrast between the fault zone and the wallrock. A high permeability contrast promotes focussed convective flow within the fault zone and diffusive exchange of heat and chemical reactants between the fault zone and the wallrock. However, a more gradual permeability change may lead to a regional-scale convective flow system where the flow pattern in the fault affects large-scale fluid flow, mass transport and chemical alteration in the wallrocks
Resumo:
INTRODUCTION Though developed for thoracic insufficiency syndrome, the spinal growth-stimulating potential and the ease of placement of vertical expandable titanium ribs (VEPTRs) has resulted in their widespread use for early-onset spine deformity. Observation of implant-related ossifications warrants further assessment, since they may be detrimental to the function-preserving non-fusion strategy. PATIENTS AND METHODS Radiographs (obtained pre and post index procedure, and at 4-year follow-up) and the records of 65 VEPTR patients from four paediatric spine centres were analysed. Ossifications were classified as type I (at anchor points), type II (along the central part) or type III (re-ossification after thoracostomy). RESULTS The average age at the index procedure was 6.5 years (min 1, max 13.7). The most prevalent spine problem was congenital scoliosis (37) with rib fusions (34), followed by neuromuscular and syndromic deformities (13 and 8, respectively). Idiopathic and secondary scoliosis (e.g. after thoracotomy) were less frequent (3 and 4, respectively). Forty-two of the 65 (65 %) patients showed ossifications, half of which were around the anchors. Forty-five percent (15/33) without pre-existing rib fusions developed a type II ossification along the implant. Re-ossifications of thoracostomies were less frequent (5/34, 15 %). The occurrence of ossifications was not associated with patient-specific factors. CONCLUSIONS Implant-related ossifications around VEPTR are common. In contrast to harmless bone formation around anchors, ossifications around the telescopic part and the rod section are troublesome in view of their possible negative impact on chest cage compliance and spinal mobility. This potential side effect needs to be considered during implant selection, particularly in patients with originally normal thoracic and spinal anatomy.