904 resultados para vernalization-related gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antarctic krill (Euphausia superba) from South Georgia comprise one of the most northern and abundant krill stocks. South Georgia waters are undergoing rapid warming, as a result of climate change, which in turn could alter the oxygen concentration of the water. We investigated gene expression in Antarctic krill related to aerobic metabolism, antioxidant defence, and heat-shock response under severe (2.5% O2 saturation or 0.6 kPa) and threshold (20% O2 saturation or 4 kPa) hypoxia exposure compared to in situ levels (normoxic; 100% O2 saturation or 21 kPa). Biochemical metabolic and oxidative stress indicators complemented the genic expression analysis to detect in vivo signs of stress during the hypoxia treatments. Expression levels of the genes citrate synthase (CS), mitochondrial manganese superoxide dismutase (SODMn-m) and one heat-shock protein isoform (E) were higher in euphausiids incubated 6 h at 20% O2 saturation than in animals exposed to control (normoxic) conditions. All biochemical antioxidant defence parameters remained unchanged among treatments. Levels of lipid peroxidation were raised after 6 h of severe hypoxia. Overall, short-term exposure to hypoxia altered mitochondrial metabolic and antioxidant capacity, but did not induce anaerobic metabolism. Antarctic krill are swarming organisms and may experience short periods of hypoxia when present in dense swarms. A future, warmer Southern ocean, where oxygen saturation levels are decreased, may result in smaller, less dense swarms as they act to avoid greater levels of hypoxia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypercapnia and elevated temperatures resulting from climate change may have adverse consequences for many marine organisms. While diverse physiological and ecological effects have been identified, changes in those molecular mechanisms, which shape the physiological phenotype of a species and limit its capacity to compensate, remain poorly understood. Here, we use global gene expression profiling through RNA-Sequencing to study the transcriptional responses to ocean acidification and warming in gills of the boreal spider crab Hyas araneus exposed medium-term (10 weeks) to intermediate (1,120 µatm) and high (1,960 µatm) PCO2 at different temperatures (5°C and 10°C). The analyses reveal shifts in steady state gene expression from control to intermediate and from intermediate to high CO2 exposures. At 5°C acid-base, energy metabolism and stress response related genes were upregulated at intermediate PCO2, whereas high PCO2 induced a relative reduction in expression to levels closer to controls. A similar pattern was found at elevated temperature (10°C). There was a strong coordination between acid-base, metabolic and stress-related processes. Hemolymph parameters at intermediate PCO2 indicate enhanced capacity in acid-base compensation potentially supported by upregulation of a V-ATPase. The likely enhanced energy demand might be met by the upregulation of the electron transport system (ETS), but may lead to increased oxidative stress reflected in upregulated antioxidant defense transcripts. These mechanisms were attenuated by high PCO2, possibly as a result of limited acid-base compensation and metabolic down-regulation. Our findings indicate a PCO2 dependent threshold beyond which compensation by acclimation fails progressively. They also indicate a limited ability of this stenoecious crustacean to compensate for the effects of ocean acidification with and without concomitant warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that β-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusarium proliferatum has been reported on garlic in the Northwest USA, Spain and Serbia, causing water-soaked tan-colored lesions on cloves. In this work, Fusarium proliferatum was isolated from 300 symptomatic garlic bulbs. Morphological identification of Fusarium was confirmed using species-specific PCR assays and EF-1α sequencing. Confirmation of pathogenicity was conducted with eighteen isolates. Six randomly selected F. proliferatum isolates from garlic were tested for specific pathogenicity and screened for fusaric acid production. Additionally, pathogenicity of each F. proliferatum isolate was tested on healthy seedlings of onion (Allium cepa), leek (A. porrum), scallions (A. fistulosum), chives (A. schoenoprasum) and garlic (A. sativum). A disease severity index (DSI) was calculated as the mean severity on three plants of each species with four test replicates. Symptoms on onion and garlic plants were observed three weeks after inoculation. All isolates tested produced symptoms on all varieties inoculated. Inoculation of F. proliferatum isolates from diseased garlic onto other Allium species provided new information on host range and pathogenicity. The results demonstrated differences in susceptibility with respect to host species and cultivar. The F. proliferatum isolates tested all produced fusaric acid (FA); correlations between FA production and isolate pathogenicity are discussed. Additionally, all isolates showed the presence of the FUM1 gene suggesting the ability of Spanish isolates to produce fumonisins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of data mining techniques for the gene profile discovery of diseases, such as cancer, is becoming usual in many researches. These techniques do not usually analyze the relationships between genes in depth, depending on the different variety of manifestations of the disease (related to patients). This kind of analysis takes a considerable amount of time and is not always the focus of the research. However, it is crucial in order to generate personalized treatments to fight the disease. Thus, this research focuses on finding a mechanism for gene profile analysis to be used by the medical and biologist experts. Results: In this research, the MedVir framework is proposed. It is an intuitive mechanism based on the visualization of medical data such as gene profiles, patients, clinical data, etc. MedVir, which is based on an Evolutionary Optimization technique, is a Dimensionality Reduction (DR) approach that presents the data in a three dimensional space. Furthermore, thanks to Virtual Reality technology, MedVir allows the expert to interact with the data in order to tailor it to the experience and knowledge of the expert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endo-β-mannanases (MAN; EC. 3.2.1.78) catalyze the cleavage of β1[RIGHTWARDS ARROW]4 bonds in mannan polymers and have been associated with the process of weakening the tissues surrounding the embryo during seed germination. In germinating Arabidopsis thaliana seeds, the most highly expressed MAN gene is AtMAN7 and its transcripts are restricted to the micropylar endosperm and to the radicle tip just before radicle emergence. Mutants with a T-DNA insertion in AtMAN7 have a slower germination than the wild type. To gain insight into the transcriptional regulation of the AtMAN7 gene, a bioinformatic search for conserved non-coding cis-elements (phylogenetic shadowing) within the Brassicaceae MAN7 gene promoters has been done, and these conserved motifs have been used as bait to look for their interacting transcription factors (TFs), using as a prey an arrayed yeast library from A. thaliana. The basic-leucine zipper TF AtbZIP44, but not the closely related AtbZIP11, has thus been identified and its transcriptional activation upon AtMAN7 has been validated at the molecular level. In the knock-out lines of AtbZIP44, not only is the expression of the AtMAN7 gene drastically reduced, but these mutants have a significantly slower germination than the wild type, being affected in the two phases of the germination process, both in the rupture of the seed coat and in the breakage of the micropylar endosperm cell walls. In the over-expression lines the opposite phenotype is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast-growing tree species of Populus spp.,Salix spp. and Eucalyptus spp. are cultivated to produce wood in a short time. Poplars are cultivated with cycles of 15-18 years to obtain saw timber and peeler logs, but when grown as short -rotation coppice(SRC) to produce biomass, planting density increases and rotation is considerably reduced (3-5 years). In this regard, research efforts are focused in the identification of traits and loci that allow the generation of improved SRC biomass-yielding genotypes. Biomass yield is a highly complex trait as it is the combined outcome of many other complex traits, each under separate polygenic control. Among profitable biomass yield-related traits are the amount of sylleptic branching and the length of winter dormancy. In poplar and in a few other Salicaceae species some lateral buds grow out sylleptically, the same season in which they form without the need of an intervening rest period. Sylleptic branching in poplar increases branch number, leaf area and general growth of the tree in its early years, and is a reasonable predictor of coppice yield. On the other hand, the length of winter dormancy determines the extent of the growth period. Our group has characterized the RAV1 gene of Castanea sativa (CsRAV1), encoding a transcription factor of the subfamily RAV (Related to ABI3/VP1). CsRAV1 expression shows a marked seasonal pattern, being higher in autumn and winter both in stems and buds. We generated transgenic lines of the hybrid clone Populus tremulax P. alba INRA 717 1B4 constitutively expressing CsRAV 1. These CsRAV1-expressing poplars develop sylleptic branches only a few weeks after potting. In addition to the sylleptic branching phenotype, these trees show phenological features that could give rise to an extended growth period. We are currently assessing the phenotype and behavior of these transgenic trees in a field trial, and ultimately, we will evaluate the impact on lignocellulosic biomass quality and production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Root-knot nematodes (RKNs) induce giant cells (GCs) from root vascular cells inside the galls. Accompanying molecular changes as a function of infection time and across different species, and their functional impact, are still poorly understood. Thus, the transcriptomes of tomato galls and laser capture microdissected (LCM) GCs over the course of parasitism were compared with those of Arabidopsis, and functional analysis of a repressed gene was performed. Microarray hybridization with RNA from galls and LCM GCs, infection-reproduction tests and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) transcriptional profiles in susceptible and resistant (Mi-1) lines were performed in tomato. Tomato GC-induced genes include some possibly contributing to the epigenetic control of GC identity. GC-repressed genes are conserved between tomato and Arabidopsis, notably those involved in lignin deposition. However, genes related to the regulation of gene expression diverge, suggesting that diverse transcriptional regulators mediate common responses leading to GC formation in different plant species. TPX1, a cell wall peroxidase specifically involved in lignification, was strongly repressed in GCs/galls, but induced in a nearly isogenic Mi-1 resistant line on nematode infection. TPX1 overexpression in susceptible plants hindered nematode reproduction and GC expansion. Time-course and cross-species comparisons of gall and GC transcriptomes provide novel insights pointing to the relevance of gene repression during RKN establishment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erwinia amylovora causes fire blight in economically important plants of the family Rosaceae. This bacterial pathogen spends part of its life cycle coping with starvation and other fluctuating environmental conditions. In many Gram-negative bacteria, starvation and other stress responses are regulated by the sigma factor RpoS. We obtained an E. amylovora rpoS mutant to explore the role of this gene in starvation responses and its potential implication in other processes not yet studied in this pathogen. Results showed that E. amylovora needs rpoS to develop normal starvation survival and viable but nonculturable (VBNC) responses. Furthermore, this gene contributed to stationary phase cross-protection against oxidative, osmotic, and acid stresses and was essential for cross-protection against heat shock, but nonessential against acid shock. RpoS also mediated regulation of motility, exopolysaccharide synthesis, and virulence in immature loquats, but not in pear plantlets, and contributed to E. amylovora survival in nonhost tissues during incompatible interactions. Our results reveal some unique roles for the rpoS gene in E. amylovora and provide new knowledge on the regulation of different processes related to its ecology, including survival in different environments and virulence in immature fruits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasingly, studies of genes and genomes are indicating that considerable horizontal transfer has occurred between prokaryotes. Extensive horizontal transfer has occurred for operational genes (those involved in housekeeping), whereas informational genes (those involved in transcription, translation, and related processes) are seldomly horizontally transferred. Through phylogenetic analysis of six complete prokaryotic genomes and the identification of 312 sets of orthologous genes present in all six genomes, we tested two theories describing the temporal flow of horizontal transfer. We show that operational genes have been horizontally transferred continuously since the divergence of the prokaryotes, rather than having been exchanged in one, or a few, massive events that occurred early in the evolution of prokaryotes. In agreement with earlier studies, we found that differences in rates of evolution between operational and informational genes are minimal, suggesting that factors other than rate of evolution are responsible for the observed differences in horizontal transfer. We propose that a major factor in the more frequent horizontal transfer of operational genes is that informational genes are typically members of large, complex systems, whereas operational genes are not, thereby making horizontal transfer of informational gene products less probable (the complexity hypothesis).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The function(s) of the genes (PKD1 and PKD2) responsible for the majority of cases of autosomal dominant polycystic kidney disease is unknown. While PKD1 encodes a large integral membrane protein containing several structural motifs found in known proteins involved in cell–cell or cell–matrix interactions, PKD2 has homology to PKD1 and the major subunit of the voltage-activated Ca2+ channels. We now describe sequence homology between PKD2 and various members of the mammalian transient receptor potential channel (TRPC) proteins, thought to be activated by G protein-coupled receptor activation and/or depletion of internal Ca2+ stores. We show that PKD2 can directly associate with TRPC1 but not TRPC3 in transfected cells and in vitro. This association is mediated by two distinct domains in PKD2. One domain involves a minimal region of 73 amino acids in the C-terminal cytoplasmic tail of PKD2 shown previously to constitute an interacting domain with PKD1. However, distinct residues within this region mediate specific interactions with TRPC1 or PKD1. The C-terminal domain is sufficient but not necessary for the PKD2–TRPC1 association. A more N-terminal domain located within transmembrane segments S2 and S5, including a putative pore helical region between S5 and S6, is also responsible for the association. Given the ability of the TRPC to form functional homo- and heteromultimeric complexes, these data provide evidence that PKD2 may be functionally related to TRPC proteins and suggest a possible role of PKD2 in modulating Ca2+ entry in response to G protein-coupled receptor activation and/or store depletion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of gene-replacement therapy for inborn errors of metabolism has been hindered by the limited number of suitable large-animal models of these diseases and by inadequate methods of assessing the efficacy of treatment. Such methods should provide sensitive detection of expression in vivo and should be unaffected by concurrent pharmacologic and dietary regimens. We present the results of studies in a neonatal bovine model of citrullinemia, an inborn error of urea-cycle metabolism characterized by deficiency of argininosuccinate synthetase and consequent life-threatening hyperammonemia. Measurements of the flux of nitrogen from orally administered 15NH4 to [15N]urea were used to determine urea-cycle activity in vivo. In control animals, these isotopic measurements proved to be unaffected by pharmacologic treatments. Systemic administration of a first-generation E1-deleted adenoviral vector expressing human argininosuccinate synthetase resulted in transduction of hepatocytes and partial correction of the enzyme defect. The isotopic method showed significant restoration of urea synthesis. Moreover, the calves showed clinical improvement and normalization of plasma glutamine levels after treatment. The results show the clinical efficacy of treating a large-animal model of an inborn error of hepatocyte metabolism in conjunction with a method for sensitively measuring correction in vivo. These studies will be applicable to human trials of the treatment of this disorder and other related urea-cycle disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about plant circadian oscillators, in spite of how important they are to sessile plants, which require accurate timekeepers that enable the plants to respond to their environment. Previously, we identified a circadian clock-associated (CCA1) gene that encodes an Myb-related protein that is associated with phytochrome control and circadian regulation in plants. To understand the role CCA1 plays in phytochrome and circadian regulation, we have isolated an Arabidopsis line with a T DNA insertion that results in the loss of CCA1 RNA, of CCA1 protein, and of an Lhcb-promoter binding activity. This mutation affects the circadian expression of all four clock-controlled genes that we examined. The results show that, despite their similarity, CCA1 and LHY are only partially redundant. The lack of CCA1 also affects the phytochrome regulation of gene expression, suggesting that CCA1 has an additional role in a signal transduction pathway from light, possibly acting at the point of integration between phytochrome and the clock. Our results indicate that CCA1 is an important clock-associated protein involved in circadian regulation of gene expression.