990 resultados para ventricule droit à double issue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymmetrically coupled (GaAs/AlAs/GaAs/AlAs)/GaAs (001) double-well supperlattice is studied by HRDCD (high resolution double-crystal X-ray diffractometry). The intensity of satellite peaks is modulated by wave packet of different sublayers. In the course of simulation, the satellite peaks in the vicinity of the node points of wave packet are very informative for precise determination of sublayer thickness and for improving accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge build-up process in the emitter of a double-barrier resonant tunneling structure is studied by using photoluminescence spectroscopy. Clear evidence is obtained that the charge accumulation in the emitter keeps almost constant with bias voltages in the resonant regime, while it increases remarkably with bias voltages beyond resonant regime. The optical results are in good agreement with the electrical measurement. It is demonstrated that the band gap renormalization plays a certain rob in the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An (A1As/GaAs/A1As/A1GaAs)/GaAs(001) double-barrier superlattice grown by molecular beam epitaxy (MBE) is studied by combining synchrotron radiation and double-crystal x-ray diffraction (DCD). The intensity of satellite peaks is modulated by the wave function of each sublayer in one superlattice period. Simulated by the x-ray dynamical diffraction theory, it is discovered that the intensity of the satellite peaks situated near the modulating wave node point of each sublayer is very sensitive to the variation of the layer structural parameters, The accurate layer thickness of each sublayer is obtained with an error less than 1 Angstrom. Furthermore, x-ray kinematical diffraction theory is used to explain the modulation phenomenon. (C) 1996 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With contributions from both three-dimensional (3D) electrons in heavily doped contacts and 2D electrons in the accumulation layer, a self-consistent calculation based on effective mass theory is presented for studying the anomalous behaviour of the quasi-bound levels in the accumulation layer and that in the central well of an asymmetric double barrier structure (DBS). By choosing the thickness of the incident barrier properly, it is revealed that these two quasi-bound levels may merge into a unique bound level in the off-resonance regime which shows a very good 2D nature in contrast to the conventional picture for level crossing. An evident intrinsic I-V bistability is also shown. It is noticeable that the effect of charge build-up in the central well is so strong that the electric field in the incident barrier even decreases when the applied bias increases within the resonant region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using deep level transient spectroscopy (DLTS) the X conduction-subband energy levels in an AlAs well sandwiched by double GaAs layers were determined. Calculation gives eight subbands in the well with well width of 50 Angstrom. Among them, five levels and the other three remainders are determined by using the large longitudinal electron effective mass m(1)(1.1m(0)) and transverse electron effective mass m(t)(0.19m(0)) at X valley, respectively. Two subbands with the height energies were hardly detectable and the other six ones with lower energies are active in the present DLTS study. Because these six subbands are close to each other, we divided them into three groups. Experimentally, we observed three signals induced from the three groups. A good agreement between the calculation and experiment was obtained. (C) 1995 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunneling escape of electrons from quantum wells (QWs) has systematically been studied in an arbitrarily multilayered heterostructures, both theoretically and experimentally. A wave packet method is developed to calculate the bias dependence of tunneling escape time (TET) in a three-barrier, two-well structure. Moreover, by considering the time variation of the band-edge profile in the escape transient, arising from the decay of injected electrons in QWs, we demonstrate that the actual escape time of certain amount of charge from QWs, instead of single electron, could be much longer than that for a single electron, say, by two orders of magnitude at resonance. The broadening of resonance may also be expected from the same mechanism before invoking various inhomogeneous and homogeneous broadening. To perform a close comparison between theory and experiment, we have developed a new method to measure TET by monitoring transient current response (TCR), stemming from tunneling escape of electrons out of QWs in a similar heterostructure. The time resolution achieved by this new method reaches to several tens ns, nearly three orders of magnitude faster than that by previous transient-capacitance spectroscopy (TCS). The measured TET shows an U-shaped, nonmonotonic dependence on bias, unambiguously indicating resonant tunneling escape of electrons from an emitter well through the DBRTS in the down-stream direction. The minimum value of TET obtained at resonance is accordance with charging effect and its time variation of injected electrons. A close comparison with the theory has been made to imply that the dynamic build-up of electrons in DBRTS might play an important role for a greatly suppressed tunneling escape rate in the vicinity of resonance.