988 resultados para undergraduate organic chemistry experiment


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO2) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near-future levels of pCO2 on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO2 treatments [Current-day Control (430 µatm), Moderate (584 µatm) and High (1032 µatm)] for a 9-month period that included the summer breeding season. Unexpectedly, increased CO2 dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO2 treatment. Pairs in the High CO2 group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO2 group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO2. However, any long-term consequences of increased reproductive effort on individuals or populations remain to be determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Marine organisms inhabiting environments where pCO2/pH varies naturally are suggested to be relatively resilient to future ocean acidification. To test this hypothesis, the effect of elevated pCO2 was investigated in the articulated coralline red alga Corallina elongata from an intertidal rock pool on the north coast of Brittany (France), where pCO2 naturally varied daily between 70 and 1000 µatm. Metabolism was measured on algae in the laboratory after they had been grown for 3 weeks at pCO2 concentrations of 380, 550, 750 and 1000 µatm. Net and gross primary production, respiration and calcification rates were assessed by measurements of oxygen and total alkalinity fluxes using incubation chambers in the light and dark. Calcite mol % Mg/Ca (mMg/Ca) was analysed in the tips, branches and basal parts of the fronds, as well as in new skeletal structures produced by the algae in the different pCO2 treatments. Respiration, gross primary production and calcification in light and dark were not significantly affected by increased pCO2. Algae grown under elevated pCO2 (550, 750 and 1000 µatm) formed fewer new structures and produced calcite with a lower mMg/Ca ratio relative to those grown under 380 µatm. This study supports the assumption that C. elongata from a tidal pool, where pCO2 fluctuates over diel and seasonal cycles, is relatively robust to elevated pCO2 compared to other recently investigated coralline algae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Community metabolism was investigated using a Lagrangian flow respirometry technique on 2 reef flats at Moorea (French Polynesia) during austral winter and Yonge Reef (Great Barrier Reef) during austral summer. The data were used to estimate related air-sea CO2 disequilibrium. A sine function did not satisfactorily model the diel light curves and overestimated the metabolic parameters. The ranges of community gross primary production and respiration (Pg and R; 9 to 15 g C m-2 d-1) were within the range previously reported for reef flats, and community net calcification (G; 19 to 25 g CaCO3 m-2 d-1) was higher than the 'standard' range. The molar ratio of organic to inorganic carbon uptake was 6:1 for both sites. The reef flat at Moorea displayed a higher rate of organic production and a lower rate of calcification compared to previous measurements carried out during austral summer. The approximate uncertainty of the daily metabolic parameters was estimated using a procedure based on a Monte Carlo simulation. The standard errors of Pg,R and Pg/R expressed as a percentage of the mean are lower than 3% but are comparatively larger for E, the excess production (6 to 78%). The daily air-sea CO2 flux (FCO2) was positive throughout the field experiments, indicating that the reef flats at Moorea and Yonge Reef released CO2 to the atmosphere at the time of measurement. FCO2 decreased as a function of increasing daily irradiance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Manipulative studies have demonstrated that ocean acidification (OA) is a threat to coral reefs, yet no experiments have employed diurnal variations in pCO2 that are ecologically relevant to many shallow reefs. Two experiments were conducted to test the response of coral recruits (less than 6 days old) to diurnally oscillating pCO2; one exposing recruits for 3 days to ambient (440 µatm), high (663 µatm) and diurnally oscillating pCO2 on a natural phase (420-596 µatm), and another exposing recruits for 6 days to ambient (456 µatm), high (837 µatm) and diurnally oscillating pCO2 on either a natural or a reverse phase (448-845 µatm). In experiment I, recruits exposed to natural-phased diurnally oscillating pCO2 grew 6-19% larger than those in ambient or high pCO2. In experiment II, recruits in both high and natural-phased diurnally oscillating pCO2 grew 16 per cent larger than those at ambient pCO2, and this was accompanied by 13-18% higher survivorship; the stimulatory effect on growth of oscillatory pCO2 was diminished by administering high pCO2 during the day (i.e. reverse-phased). These results demonstrate that coral recruits can benefit from ecologically relevant fluctuations in pCO2 and we hypothesize that the mechanism underlying this response is highly pCO2-mediated, night-time storage of dissolved inorganic carbon that fuels daytime calcification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study includes the first information on the combined effect of low pH and raised temperature on egg production rate (EP), hatching success (HS), excretion and respiration of the Mediterranean copepod Acartia clausi. Adult individuals of A. clausi and fresh surface seawater were collected at a coastal station in Saronikos Gulf during April 2012. Four different conditions were applied: two different pH levels (present: 8.09 and future: 7.83) at two temperature values (present: 16°C and present+4 °C= 20°C). EP and HS success decreased significantly over the duration of exposure at future pH at both temperature conditions. However, the analysis of the combined effect of pH, T, chlorophyll a and the duration of the experiments on EP and HS revealed that ocean acidification had no discernible effect, whereas warming; food and the duration of exposure were more significant for the reproductive output of A. clausi. Temperature appeared to have a positive effect on respiration and excretion. Acidification had no clear effect on respiration, but a negative effect on the A. clausi excretion was observed. Acidification and warming resulted in the increase of the excretion rate and the increase was higher than that observed by warming only. Our findings showed that a direct effect of ocean acidification on copepod's vital rates was not obvious, except maybe in the case of excretion. Therefore, the combination of acidification with the ambient oligotrophic conditions and the warming could result in species being less able to allocate resources for coping with multiple stressors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been proposed that increasing levels of pCO2 in the surface ocean will lead to more partitioning of the organic carbon fixed by marine primary production into the dissolved rather than the particulate fraction. This process may result in enhanced accumulation of dissolved organic carbon (DOC) in the surface ocean and/or concurrent accumulation of transparent exopolymer particles (TEPs), with important implications for the functioning of the marine carbon cycle. We investigated this in shipboard bioassay experiments that considered the effect of four different pCO2 scenarios (ambient, 550, 750 and 1000 µatm) on unamended natural phytoplankton communities from a range of locations in the northwest European shelf seas. The environmental settings, in terms of nutrient availability, phytoplankton community structure and growth conditions, varied considerably between locations. We did not observe any strong or consistent effect of pCO2 on DOC production. There was a significant but highly variable effect of pCO2 on the production of TEPs. In three of the five experiments, variation of TEP production between pCO2 treatments was caused by the effect of pCO2 on phytoplankton growth rather than a direct effect on TEP production. In one of the five experiments, there was evidence of enhanced TEP production at high pCO2 (twice as much production over the 96 h incubation period in the 750 ?atm treatment compared with the ambient treatment) independent of indirect effects, as hypothesised by previous studies. Our results suggest that the environmental setting of experiments (community structure, nutrient availability and occurrence of phytoplankton growth) is a key factor determining the TEP response to pCO2 perturbations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An in situ iron enrichment experiment was carried out in the Southern Ocean Polar Frontal Zone and fertilized a patch of water within an eddy of the Antarctic Circumpolar Current (EisenEx, Nov. 2000). During the experiment, a physical speciation technique was used for iron analysis in order to understand the changes in iron distribution and size-fractionations, including soluble Fe (<200 kDa), colloidal Fe (200 kDa-0.2 µm) and labile particle Fe (>0.2 µm), throughout the development of the phytoplankton bloom. Prior to the first infusion of iron, dissolved (<0.2 µm) iron concentrations in the ambient surface seawater were extremely low (0.06±0.015 nM) with colloidal iron being a minor fraction. For the iron addition, an acidified FeSO4 solution was released three times over a 23-day period to the eddy. High levels of dissolved iron concentrations (2.0±1.1 nM) were measured in the surface water until 4 days after the first iron infusion. After every iron infusion, when high iron concentrations were observed before storm events, there was a significant correlation between colloidal and dissolved iron concentrations ([Colloidal Fe]=0.7627[Dissolved Fe]+0.0519, R2=0.9346). These results indicate that a roughly constant proportion of colloidal vs. dissolved iron was observed after iron infusion (~76%). Storm events caused a significant decrease in iron concentrations (<0.61 nM in dissolved iron) and changed the proportions of the three iron size-fractions (soluble, colloidal and labile particle). The changes in each iron size-fraction indicate that colloidal iron was eliminated from surface mixed layer more easily than particulate and soluble fractions. Therefore, particle and soluble iron efficiently remain in the mixed layer, probably due to the presence of suspended particles and naturally dissolved organic ligands. Our data suggest that iron removal through colloidal aggregation during phytoplankton bloom should be considered in the oceanic iron cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the effects of elevated pCO2 in seawater both on the acute mortality and the reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica with the purpose of accumulating basic data for assessing potential environmental impacts of sub-sea geological storage of anthropogenic CO2 in Japan. Acute tests showed that nauplii of T. japonicus have a high tolerance to elevated pCO2 environments. Full life cycle tests on T. japonicus indicated NOEC = 5800 µatm and LOEC = 37,000 µatm. Adult B. japonica showed remarkable resistance to elevated pCO2 in the acute tests. Embryonic development of B. japonica showed a NOEC = 1500 µatm and LOEC = 5400 µatm. T. japonicus showed high resistance to elevated pCO2 throughout the life cycle and B. japonica are rather sensitive during the veliger stage when they started to form their shells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium) into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2) on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus). We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California). Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 µatm; pHT = 8.02 ± 0.03 1 SD; Omega calcite = 3.3 ± 0.2 1 SD). However, when reared under elevated pCO2 (900 µatm; pHT = 7.73 ± 0.03; Omega calcite = 1.8 ± 0.1), skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California) did not exhibit differences in Mg or Sr incorporation under elevated pCO2 (Sr / Ca = 2.10 ± 0.06 mmol/mol; Mg / Ca = 67.4 ± 3.9 mmol/mol), juveniles of Southern California origin partitioned ~8% more Sr into their skeletons when exposed to higher pCO2 (Sr / Ca = 2.26 ± 0.08 vs. 2.09 ± 0.005 mmol/mol 1 SD). Together these results suggest that the diversity of carbonate minerologies present across different skeletal structures and life stages in purple sea urchins does not translate into an equivalent geochemical plasticity of response associated with geographic variation or temporal shifts in seawater properties. Rather, composition of S. purpuratus skeleton precipitated during both early and adult life history stages appears relatively robust to spatial gradients and predicted future changes in carbonate chemistry. An exception to this trend may arise during early life stages, where certain populations of purple sea urchins may alter skeletal mineral precipitation rates and composition beyond a given pCO2 threshold. This potential for geochemical plasticity during early development in contrast to adult stage geochemical resilience adds to the growing body of evidence that ocean acidification can have differing effects across organismal life stages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coccolithophores play an important role in organic matter export due to their production of the mineral calcite that can act as ballast. Recent studies indicated that calcification in coccolithophores may be affected by changes in seawater carbonate chemistry. We investigated the influence of CO2 on the aggregation and sinking behaviour of the coccolithophore Emiliania huxleyi (PML B92/11) during a laboratory experiment. The coccolithophores were grown under low (~180 µatm), medium (~380 µatm), and high (~750 µatm) CO2 conditions. Aggregation of the cells was promoted using roller tables. Size and settling velocity of aggregates were determined during the incubation using video image analysis. Our results indicate that aggregate properties are sensitive to changes in the degree of ballasting, as evoked by ocean acidification. Average sinking velocity was highest for low CO2 aggregates (~1292 m d-1) that also had the highest particulate inorganic to particulate organic carbon (PIC/POC) ratio. Lowest PIC/POC ratios and lowest sinking velocity (~366 m d-1) at comparable sizes were observed for aggregates of the high CO2 treatment. Aggregates of the high CO2 treatment showed a 4-fold lower excess density (~4.2*10**-4 g cm**-3) when compared to aggregates from the medium and low CO2 treatments (~1.7 g*10**-3 cm**-3). We also observed that more aggregates formed in the high CO2 treatment, and that those aggregates contained more bacteria than aggregates in the medium and low CO2 treatment. If applicable to the future ocean, our findings suggest that a CO2 induced reduction of the calcite content of aggregates could weaken the deep export of organic matter in the ocean, particularly in areas dominated by coccolithophores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena has a high enzyme affinity for dissolved organic phosphorus (DOP) by production and release of alkaline phosphatase. Additionally, it is able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days aerated with three different pCO2 levels corresponding to values from glacial periods to future values projected for the year 2100. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment-related effects were identified for cyanobacterial growth, which in turn was influencing exudation and recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment and simultaneously increasing exudation. During the growth phase significantly more mucinous substances accumulated in the high pCO2 treatment reaching 363 µg Gum Xanthan eq /l compared to 269 µg Gum Xanthan eq /l in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities were increased by factor 1.64 and 2.25, respectively, in the medium and high compared to the low pCO2 treatment. In conclusion, our results suggest that Nodularia spumigena can grow faster under elevated pCO2 by enhancing the recycling of organic matter to acquire nutrients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study investigates the combined effect of phosphorous limitation, elevated partial pressure of CO2 (pCO2) and temperature on a calcifying strain of Emiliania huxleyi (PML B92/11) by means of a fully controlled continuous culture facility. Two levels of phosphorous limitation were consecutively applied by renewal of culture media (N:P = 26) at dilution rates (D) of 0.3 d- and 0.1 d-1. CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C and 900 µatm pCO2 at 18 °C. In general, the steady state cell density and particulate organic carbon (POC) production increased with pCO2, yielding significantly higher concentrations in cultures grown at 900 µatm pCO2 compared to 300 and 550 µatm pCO2. At 900 µatm pCO2, elevation of temperature as expected for a greenhouse ocean, further increased cell densities and POC concentrations. In contrast to POC concentration, C-quotas (pmol C cell-1) were similar at D = 0.3 d-1 in all cultures. At D = 0.1 d-1, a reduction of C-quotas by up to 15% was observed in the 900 µatm pCO2 at 18 °C culture. As a result of growth rate reduction, POC:PON:POP ratios deviated strongly from the Redfield ratio, primarily due to an increase in POC. Ratios of particulate inorganic and organic carbon (PIC:POC) ranged from 0.14 to 0.18 at D = 0.3 d-1, and from 0.11 to 0.17 at D = 0.1 d-1, with variations primarily induced by the changes in POC. At D = 0.1 d-1, cell volume was reduced by up to 22% in cultures grown at 900 µatm pCO2. Our results indicate that changes in pCO2, temperature and phosphorus supply affect cell density, POC concentration and size of E. huxleyi (PML B92/11) to varying degrees, and will likely impact bloom development as well as biogeochemical cycling in a greenhouse ocean.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using living corals collected from Okinawan coral reefs, laboratory experiments were performed to investigate the relationship between coral calcification and aragonite saturation state (W) of seawater at 25?C. Calcification rate of a massive coral Porites lutea cultured in a beaker showed a linear increase with increasing Waragonite values (1.08-7.77) of seawater. The increasing trend of calcification rate (c) for W is expressed as an equation, c = aW + b (a, b: constants). When W was larger than ~4, the coral samples calcified during nighttime, indicating an evidence of dark calcification. This study strongly suggests that calcification of Porites lutea depends on W of ambient seawater. A decrease in saturation state of seawater due to increased pCO2 may decrease reef-building capacity of corals through reducing calcification rate of corals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a considerable interest in coordination complexes of molecular nitrogen (N2), partly due to a possible relationship between such complexes and the nitrogen activation process in nature. The present paper describes the synthesis and infrared spectroscopic characterization of an iron-nitrogen derivative with ethylenediamine-N,N,N',N'-tetraacetate (edta) as an experiment for an undergraduate course. The topics covered here include synthesis, reactivity and spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homo and heterotrinuclear acetates are unique compounds having μ3-oxo bridge and many interesting properties of such compounds are derived from this structure. Some undergraduate inorganic textbooks discuss several aspects of these compounds and we present here an undergraduate experiment for the high-yield synthesis of [Fe2MO(CH3CO2)6(H 2O)3], with M = Fe3+, Co2+ and Ni2+, as well as their characterization using infrared spectroscopy and cyclic voltametry. The proposed experiment gives the opportunity to discuss several concepts of coordination chemistry that follow the characterization techniques, such as: types of acetate coordination, reversibility of electrochemical processes, quelate and trans effects and lability.