981 resultados para turbulence flow
Resumo:
Numerical modeling of saturated subsurface flow and transport has been widely used in the past using different numerical schemes such as finite difference and finite element methods. Such modeling often involves discretization of the problem in spatial and temporal scales. The choice of the spatial and temporal scales for a modeling scenario is often not straightforward. For example, a basin-scale saturated flow and transport analysis demands larger spatial and temporal scales than a meso-scale study, which in turn has larger scales compared to a pore-scale study. The choice of spatial-scale is often dictated by the computational capabilities of the modeler as well as the availability of fine-scale data. In this study, we analyze the impact of different spatial scales and scaling procedures on saturated subsurface flow and transport simulations.
Resumo:
Boundary layer transition induced by the wake of a circular cylinder in the free stream has been investigated using the particle image velocimetry technique. Some differences between simulation and experimental studies have been reported in the literature, and these have motivated the present study. The appearance of spanwise vortices in the early stage is further confirmed here. Lambda spanwise vortex appears to evolve into a Lambda/hairpin vortex; the flow statistics also confirm such vortices. With increasing Reynolds number, based on the cylinder diameter, and with decreasing cylinder height from the plate, the physical size of these hairpin-like structures is found to decrease. Some mean flow characteristics, including the streamwise growth of the disturbance energy, in a wake-induced transition resemble those in bypass transition induced by free stream turbulence. Streamwise velocity streaks that are eventually generated in the late stage often undergo sinuous-type oscillations. Similar to other transitional flows, an inclined shear layer in the wall-normal plane is often seen to oscillate and shed vortices. The normalized shedding frequency of these vortices, estimated from the spatial spacing and the convection velocity of these vortices, is found to be independent of the Reynolds number, similar to that in ribbon-induced transition. Although the nature of free stream disturbance in a wake-induced transition and that in a bypass transition are different, the late-stage features including the flow breakdown characteristics of these two transitions appear to be similar.
Resumo:
The present work describes steady and unsteady computation of reacting flow in a Trapped Vortex Combustor. The primary motivation of this study is to develop this concept into a working combustor in modern gas turbines. The present work is an effort towards development of an experimental model test rig for further understanding dynamics of a single cavity trapped vortex combustor. The steady computations with and without combustion have been done for L/D of 0.8, 1 and 1.2; also unsteady non-reacting flow simulation has been done for L/D of 1. Fuel used for the present study is methane and Eddy-Dissipation model has been used for combustion-turbulence interactions. For L/D of 0.8, combustion efficiency is maximum and pattern factor is minimum. Also, primary vortex in the cavity is more stable and symmetric for L/D of 0.8. From unsteady non-reacting flow simulations, it is found that there is no vortex shedding from the cavity but there are oscillations in the span-wise direction of the combustor.