998 resultados para tidal current


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the possibility of using a background gas medium to enhance the current available from low threshold carbon cathodes. The field emission current is used to initiate a plasma in the gas medium, and thereby achieve a current multiplication effect. Results on the variation of anode current as a function of electric field and gas pressure are presented. These are compared with model calculations to verify the principles of operation. The influence of ion bombardment on the long term performance thin film carbon cathodes is examined for He and Ar multiplication plasmas. A measure of the influence of current multiplication on display quality is presented by examining light output from two standard low voltage phosphors. Also studied are the influence of doping the carbon with N to lower the threshold voltage for emission as well as the consequent impact on anode current from the plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum nitride (AlN) piezoelectric thin films with c-axis crystal orientation on polymer substrates can potentially be used for development of flexible electronics and lab-on-chip systems. In this study, we investigated the effects of deposition parameters on the crystal structure of AlN thin films on polymer substrates deposited by reactive direct-current magnetron sputtering. The results show that low sputtering pressure as well as optimized N 2/Ar flow ratio and sputtering power is beneficial for AlN (002) orientation and can produce a highly (002) oriented columnar structure on polymer substrates. High sputtering power and low N 2/Ar flow ratio increase the deposition rate. In addition, the thickness of Al underlayer also has a strong influence on the film crystallography. The optimal deposition parameters in our experiments are: deposition pressure 0.38 Pa, N 2/Ar flow ratio 2:3, sputtering power 414 W, and thickness of Al underlayer less than 100 nm. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the modeling of second generation (2 G) high-temperature superconducting (HTS) pancake coils using finite element method. The axial symmetric model can be used to calculate current and magnetic field distribution inside the coil. The anisotropic characteristics of 2 G tapes are included in the model by direct interpolation. The model is validated by comparing to experimental results. We use the model to study critical currents of 2 G coils and find that 100μV/m is too high a criterion to determine long-term operating current of the coils, because the innermost turns of a coil will, due to the effect of local magnetic field, reach their critical current much earlier than outer turns. Our modeling shows that an average voltage criterion of 20μV/m over the coil corresponds to the point at which the innermost turns' electric field exceeds 100μV/m. So 20μV/m is suggested to be the critical current criterion of the HTS coil. The influence of background field on the coil critical current is also studied in the paper. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A superconducting fault current limiter (SFCL) for 6.6 kV and 400 A installed in a cubicle for a distribution network substation was conceptually designed. The SFCL consists of parallel- and series-connected superconducting YBCO elements and a limiting resistor. Before designing the SFCL, some tests were carried out. The width and length of each element used in the tests are 30 mm and 210 mm, respectively. The element consists of YBCO thin film of about 200 nm in thickness on cerium dioxide (CeO2) as a cap-layer on a sapphire substrate by metal-organic deposition with a protective metal coat. In the tests, characteristics of each element, such as over-current, withstand-voltage, and so on, were obtained. From these characteristics, series and parallel connections of the elements, called units, were considered. The characteristics of the units were obtained by tests. From the test results, a single phase prototype SFCL was manufactured and tested. Thus, an SFCL rated at 6.6 kV and 400 A can be designed. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconducting Fault Current Limiters (SFCLs) are able to reduce fault currents to an acceptable value, reducing potential mechanical and thermal damage to power system apparatus and allowing more flexibility in power system design and operation. The device can also help avoid replacing circuit breakers whose capacity has been exceeded. Due to limitations in current YBCO thin film manufacturing processes, it is not easy to obtain one large thin film that satisfies the specifications for high voltage and large current applications. The combination of standardized thin films has merit to reduce costs and maintain device quality, and it is necessary to connect these thin films in different series and parallel configurations in order to meet these specifications. In this paper, the design of a resistive type SFCL using parallel-connected YBCO thin films is discussed, including the role of a parallel resistor and the influence of individual thin film characteristics, based on both theory and experimental results. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An advanced 700V Smart Trench IGBT with monolithically integrated over-voltage and over-current protecting circuits is presented in this paper. The proposed Smart IGBT comprises a sense IGBT, a low voltage lateral n-channel MOSFET (M 1), an avalanche diode (D av), and poly-crystalline Zener diodes (ZD) and resistor (R poly). Mix-mode transient simulations with MEDICI have proven the functionalities of the protecting circuits when the device is operating under abnormal conditions, such as Unclamped Inductive Switching (UIS) and Short Circuit (SC) condition. A Trench IGBT process is used to fabricate this device with total 11 masks including one metal mask only. The characterizations of the fabricated device exhibit the clamping capability of the avalanche diode and voltage pull-down ability of the MOSFET. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of High Temperature Superconducting (HTS) has been increasingly popular since the new superconducting materials were discovered. This paper presents a new high-precision digital lock-in measurement technique which is used for measuring critical current and AC loss of the 2nd Generation HTS tape. Using a lock-in amplifier and nano-voltage meter, we can resolve signals at nano-volt level, while using a specially designed compensation coil we can cancel out inductive by adjusting the coil inductance. Furthermore, a finer correction for the inductive component can be achieved by adjusting the reference phase of the lock-in amplifier. The critical current and AC loss measurement algorithms and hardware layout are described and analyzed, and results for both numerical and experimental data under varieties of frequencies are presented. © 2008 SICE.