963 resultados para thin film electrode
Resumo:
As a green process, electrochemistry in aqueous solution without a supporting electrolyte has been described based on a simple polyelectrolyte-functionalized ionic liquid (PFIL)-modified electrode. The studied PFIL material combines features of ionic liquids and traditional polyelectrolytes. The ionic liquid part provides a high ionic conductivity and affinity to many different compounds. The polyelectrolyte part has a good stability in aqueous solution and a capability of being immobilized on different substrates. The electrochemical properties of such a PFIL-modified electrode assembly in a supporting electrolyte-free solution have been investigated by using an electrically neutral electroactive species, hydroquinone ( HQ) as the model compound. The partition coefficient and diffusion coefficient of HQ in the PFIL film were calculated to be 0.346 and 4.74 X 10(-6) cm(2) s(-1), respectively. Electrochemistry in PFIL is similar to electrochemistry in a solution of traditional supporting electrolytes, except that the electrochemical reaction takes place in a thin film on the surface of the electrode. PFILs are easily immobilized on solid substrates, are inexpensive and electrochemically stable. A PFIL-modified electrode assembly is successfully used in the flow analysis of HQ by amperometric detection in solution without a supporting electrolyte.
Resumo:
Ordered hexagonal droplets patterns in phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/PVP) formed due to the convection effect by solvent evaporation. The influences of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to PVP on the PVP-rich domains pattern formation and distributions were investigated by atomic force microscope (AFM). Only in an appropriate range of molecular weight of PS, can the ordered pattern form. Too low or too high molecular weight of PS led no ordered pattern due to the viscosity effects. The increase of solvent evaporation rate decreased the mean radius of the PVP-rich domains and the intervals between the centers of the domains due to the enhancement of the viscosity on the top layer of the fluid film. The increase of the weight ratio of PS to PVP decreased mean radius of the PVP-rich domains whereas the intervals between the centers of droplets remained constant. Therefore, the size and the distributions of ordered patterns can be tuned by the polymer molecular weight, the weight ratio of the two components and the solvent evaporation rate.
Resumo:
Polyester thin films containing europium-substituted heteropolytungstate were obtained on quartz plate by the sol-gel method. The films exhibited the characteristic emission bands of the europium ion. The red to orange intensity ratio (R:O) of Eu3+ in the films increased as compared to the corresponding heteropolytungstate solids. The fluorescence lifetime of europium is shorter in the thin film than in the heteropolytungstate solid. The results indicated that the formation of europium-substituted heteropolytungstate/polyester thin film has great effect on the luminescence of europium- substituted heteropolytungstate.
Resumo:
A bilayer CdS/ITO film was obtained. The dipped CdS was grown by an ultrasonic colloid deposition (USCD) method. Microstructure of the CdS film made by USCD has a wider transmission range and a higher transmittance. Amorphous indium-tin-oxide (ITO) thin film was deposited using d.c. magnetron-sputtering at room temperature. The ITO films exhibited good conductivity and maximum transmittance of 94%. The CdS/ITO bilayer was investigated by means of GIXD (grazing incidence X-ray diffraction) at different incidence angles (alpha = 0.20-5.00degrees) and XRD. We discuss a model for the thin bilayer film. SEM and AFM show that homogeneous CdS films with a bar-shaped ultrafine particles and ITO film with nanometer structure. The mechanism of the bilayer CdS/ITO film is discussed.
Resumo:
Fabrication of ultrathin polymer composite films with low dielectric constants has been demonstrated. Octa( aminophenyl) silsesquioxane (OAPS) was synthesized and assembled with poly( acrylic acid) (PAA) and poly( styrene sulfonate) (PSS) via a layer-by-layer electrostatic self-assembly technique to yield nanoporous ultrathin films. The OAPS was soluble in water at pH 3 or lower, and suitable pH conditions for the OAPS/PAA and OAPS/PSS assemblies were determined. The multilayer formation process was studied by contact angle analysis, X-ray photoelectron spectroscopy, atomic force microscopy, quartz crystal microgravimetry, UV-vis spectroscopy, and ellipsometry. The multilayer growth was found to be steady and uniform, and the analysis of the film surface revealed a rough topography due to OAPS aggregates. The incorporation of porous OAPS molecules into the thin films significantly lowered their dielectric constants. The OAPS/PAA multilayer thin film thus prepared exhibited a dielectric constant of 2.06 compared to 2.58 for pure PAA film. The OAPS/PAA multilayer film was heated to effect cross-linking between the OAPS and the PAA layers, and the transformation was verified by reflection-absorption Fourier transform infrared spectroscopy.
Resumo:
We have systematically studied the thin film morphologies of symmetric poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer after annealing to solvents with varying selectivity. Upon neutral solvent vapor annealing, terraced morphology is observed without any lateral structures on the surfaces. When using PS-selective solvent annealing, the film exhibits macroscopically flat with a disordered micellar structure. While PMMA-selective solvent annealing leads to the dewetting of the film with fractal-like holes, with highly ordered nanoscale depressions in the region of undewetted films. In addition, when decreasing the swelling degree of the film in the case of PMMA-selective solvent annealing, hills and valleys are observed with the coexistence of highly ordered nanoscale spheres and stripes on the surface, in contrast to the case of higher swelling degree. The differences are explained qualitatively on the basis of polymer-solvent interaction parameters of the different components.
Resumo:
A novel method for the fabrication of gold nanoparticle multilayer films based on the covalent-bonding interaction between boronic acid and polyols, poly(vinyl alcohol) (PVA), was developed. The multilayer buildup was monitored by UV-vis absorbance, spectroscopy, which showed a linear increase of the film absorbance with the number of adsorbed Au layers and indicated the stepwise and uniform assembling process. The atomic force microscopy (AFM) image showed that a compact gold multilayer thin film was successfully assembled. The residual boronic acid group on the surface of thin film Could incorporate glycosylated-protein horseradish peroxidase (HRP), and good catalytic activity for H2O2 could be observed.
Resumo:
Organic thin film transistors based on pentacene are fabricated by the method of full evaporation. The thickness of insulator film can be controlled accurately, which influences the device operation voltage markedly. Compared to the devices with a single-insulator layer, the electric performance of devices by using a double-insulator as the gate dielectric has good improvement. It is found that the gate leakage current can be reduced over one order of magnitude, and the on-state current can be enhanced over one order of magnitude. The devices with double-insulator layer exhibit field-effect mobility as large as 0.14 cm(2)/Vs and near the zero threshold voltage. The results demonstrate that using proper double insulator as the gate dielectrics is an effective method to fabricate OTFTs with high electrical performance.
Resumo:
Rare-earth ion (Eu3+, Tb3+, Ce3+)- doped LaPO4 nanocrystalline thin films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography on silicon and silica glass substrates. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), scanning electron microcopy (SEM), optical microscopy, absorption and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicate that the films begin to crystallize at 700 degreesC and the crystallinity increases with increasing annealing temperature. The morphology of the thin film depends on the annealing temperature and the number of coating layers. The 1000 degreesC annealed single layer film is transparent to the naked eye, uniform and crack-free with a thickness of about 200 nm and an average grain size of 100 nm. Patterned thin films with different strip widths ( 5 - 50 mm) were obtained by micromolding in capillaries ( soft lithography). The doped rare earth ions show their characteristic emission in the nanocrystalline LaPO4 films, i.e., Eu3+ D-5(0)-F-7(J) (J = 1, 2, 3, 4), Tb3+ D-5(3,4) - F-7(J) ( J = 6, 5, 4, 3, 2) and Ce3+ 5d-4f transition emissions, respectively. Both the lifetimes and the PL intensities of Eu3+ and Tb3+ increase with increasing annealing temperature, and the optimum concentrations for them were determined to be 5 mol% and 16 mol% of La3+ in LaPO4 thin films, respectively. An energy transfer phenomenon from Ce3+ to Tb3+ has been observed in LaPO4 nanocrystalline thin films, and the energy transfer efficiency depends on the doping concentration of Tb3+ if the concentration of Ce3+ is fixed.
Resumo:
Ce3+ and/or Tb3+-doped LaPO4 nanocrystalline thin films and their patterning were fabricated by a sol-gel process combined with soft lithography on silicon and quartz glass substrates. The results of XRD indicated that the films began to crystallize at 700 degreesC. The 1000 degreesC annealed single layer films are transparent by eyes, uniform and crack-free with a thickness of about 200 nm and an average grain size of 100 nm. Patterned thin film with different band widths (5-50 mum) were obtained by micro-molding in capillaries technique. The luminescence and energy transfer properties of Ce3+ and Tb3+ were studied in LaPO4 films.
Resumo:
Thin film phosphors with compositions of RP1-xVxO4: A (R = Y, Gd, La; A = Sm3+, Et3+; x = 0, 0.5, 1) have been prepared by a Pechini sol-gel process. X-Ray diffraction, atomic force microscopy (AFM), photoluminescence excitation and emission spectra were utilized to characterize the thin film phosphors. The results of XRD showed that a solid solution formed in YVxP1-xO4: A film series from x = 0 to x = 1 with zircon structure, which also held for GdVO4: A film. However, LaVO4: A film crystallized with a different structure, monazite. AFM study revealed that the phosphor films consisted of homogeneous particles ranging from 90 to 400 nm depending on the compositions. Upon short ultraviolet excitation, the films exhibit the characteristic Sm(3+ 4)G(5/2)-H-6(J) (J=5/2, 7/2, 9/2) emission in the red region and Er3+ H-2(11/2), S-4(3/2)-I-4(15/2) emission in the green region, respectively With the increase of x values in YVxP1-xO4: SM3+ (Er3+) films, the emission intensity Of SM3+ (Er3+) increases due to the increase of energy transfer probability from VO43- to Sm3+ (Er3+). Due to the structural effects, the Sm3+ (Er3+) shows similar spectral properties in YVO4 and GdVO4 films, which are much different from those in LaVO4 film.
Resumo:
Silver underpotential deposition (UPD)-induced surface atomic rearrangement of polycrystalline gold nanofilms was probed with use of surface plasmon resonance spectroscopy (SPRs) as a novel probe tool in combination with cyclic voltammetry. Interestingly, upon repetitive electrochemical UPD and stripping of Ag, the surface structure of the resulting bare Au film is rearranged due to strong adatom-substrate interactions, which causes a large angle shift of SPR R-theta curves, in a good linear relationship with the number of UPDs, to a lower SPR angle. The n, K values of the surfacial Au monolayers before and after the repetitive Ag UPD and stripping for 27 times are found to be 0.133, 3.60 and 0.565, 9.39, respectively, corresponding to the huge shift of 1.61degrees to the left of the SPR minima. Cyclic voltammetry experiments in 0.10 M H2SO4 are carried out before and after the UPD treatment to examine the quality of the whole electrode surface and confirmed this change. To correlate the angle change in SPRs with the profile change in the cyclic voltammogram, the UPD treatment was also performed on a Au(111) textured thin film. It was therefore confirmed that the resonance position of the SPR spectrum is very sensitive to the surface crystallographic orientation of the bare Au substrates. Some surface atomic rearrangement can cause a pronounced SPR angle shift.
Resumo:
earth (Eu3+, Dy3+)-heteropolytungstate thin films were fabricated by self-assembly method successfully. The thin films give off strong fluorescence, which can be observed by eyes upon UV irradiation. The characteristic emission behaviors of the rare earth ions in self-assembled thin film were investigated compared with those of the corresponding solids. It is noticed that the intensity ratio between D-5(0) --> F-7(2) and D-5(0) --> F-7(1) of Eu3+ and the intensity ratio between F-4(9/2) --> H-6(13/2) and F-4(9/2) --> H-6(15/2) of Dy3+ in the self-assembled films are different from those of the corresponding solids. Furthermore, the self-assembled films present shorter fluorescence lifetimes than the corresponding solids. The reasons for these results have been discussed.
Resumo:
A novel hybrid photochromic composite film composed of Preyssler's heteropoly acid H-12[EuP5W30O110] (EuP5W30) and polyvinylpyrrolidone (PVP) was prepared by dip-coating method. Atomic force microscopy (AFM) was used to investigate the surface topography. The change of characteristic peak in the infrared spectra (IR) was investigated. The TG curve showed three steps of weight loss and approximately revealed the composition of the hybrid film. Ultraviolet-visible adsorption spectra (UV-VIS) and electron resonance spectrum (ESR) were used to investigate the photochromic behavior and mechanism of hybrid film. The photoluminescent behavior of the film at room temperature was investigated to show the characteristic Eu3+ emission pattern of D-5(o)-F-7(J). The occurrence of photoluminescent activity confirms the potential for creating luminescent thin film with polyoxometalates (POMs).
Resumo:
Direct electrochemistry of hemoglobin was observed in stable thin film composed of a natural lipid (egg-phosphatidylcholine) and hemoglobin on pyrolytic graphite (PG) electrode. Hemoglobin in lipid films shows thin layer electrochemistry behavior. The formal potential Edegrees' of hemoglobin in the lipid film was linearly varied with pH in the range from 3.5 to 7.0 with a slope of -46.4 mV pH(-1) Hemoglobin in the lipid film exhibited elegant catalytic activity for electrochemical reduction of H202, based which a unmediated biosensor for H2O2 was developed.