957 resultados para thermohaline stratification
Resumo:
BACKGROUND: Mortality and morbidity from acute myocardial infarction (AMI) remain high. Intravenous magnesium started early after the onset of AMI is thought to be a promising adjuvant treatment. Conflicting results from earlier trials and meta-analyses warrant a systematic review of available evidence. OBJECTIVES: To examine the effect of intravenous magnesium versus placebo on early mortality and morbidity. SEARCH STRATEGY: We searched CENTRAL (The Cochrane Library Issue 3, 2006), MEDLINE (January 1966 to June 2006) and EMBASE (January 1980 to June 2006), and the Chinese Biomedical Disk (CBM disk) (January 1978 to June 2006). Some core Chinese medical journals relevant to the cardiovascular field were hand searched from their starting date to the first-half year of 2006. SELECTION CRITERIA: All randomized controlled trials that compared intravenous magnesium with placebo in the presence or absence of fibrinolytic therapy in addition to routine treatment were eligible if they reported mortality and morbidity within 35 days of AMI onset. DATA COLLECTION AND ANALYSIS: Two reviewers independently assessed the trial quality and extracted data using a standard form. Odds ratio (OR) were used to pool the effect if appropriate. Where heterogeneity of effects was found, clinical and methodological sources of this were explored. MAIN RESULTS: For early mortality where there was evidence of heterogeneity, a fixed-effect meta-analysis showed no difference between magnesium and placebo groups (OR 0.99, 95%CI 0.94 to 1.04), while a random-effects meta-analysis showed a significant reduction comparing magnesium with placebo (OR 0.66, 95% CI 0.53 to 0.82). Stratification by timing of treatment (< 6 hrs, 6+ hrs) reduced heterogeneity, and in both fixed-effect and random-effects models no significant effect of magnesium was found. In stratified analyses, early mortality was reduced for patients not treated with thrombolysis (OR=0.73, 95% CI 0.56 to 0.94 by random-effects model) and for those treated with less than 75 mmol of magnesium (OR=0.59, 95% CI 0.49 to 0.70) in the magnesium compared with placebo groups.Meta-analysis for the secondary outcomes where there was no evidence of heterogeneity showed reductions in the odds of ventricular fibrillation (OR=0.88, 95% CI 0.81 to 0.96), but increases in the odds of profound hypotension (OR=1.13, 95% CI 1.09 to 1.19) and bradycardia (OR=1.49, 95% CI 1.26 to 1.77) comparing magnesium with placebo. No difference was observed for heart block (OR=1.05, 95% CI 0.97-1.14). For those outcomes where there was evidence of heterogeneity, meta-analysis with both fixed-effect and random-effects models showed that magnesium could decrease ventricular tachycardia (OR=0.45, 95% CI 0.31 to 0.66 by fixed-effect model; OR=0.40, 95% CI 0.19 to 0.84 by random-effects model) and severe arrhythmia needing treatment or Lown 2-5 (OR=0.72, 95% CI 0.60 to 0.85 by fixed-effect model; OR=0.51, 95% CI 0.33 to 0.79 by random-effects model) compared with placebo. There was no difference on the effect of cardiogenic shock between the two groups. AUTHORS' CONCLUSIONS: Owing to the likelihood of publication bias and marked heterogeneity of treatment effects, it is essential that the findings are interpreted cautiously. From the evidence reviewed here, we consider that: (1) it is unlikely that magnesium is beneficial in reducing mortality both in patients treated early and in patients treated late, and in patients already receiving thrombolytic therapy; (2) it is unlikely that magnesium will reduce mortality when used at high dose (>=75 mmol); (3) magnesium treatment may reduce the incidence of ventricular fibrillation, ventricular tachycardia, severe arrhythmia needing treatment or Lown 2-5, but it may increase the incidence of profound hypotension, bradycardia and flushing; and (4) the areas of uncertainty regarding the effect of magnesium on mortality remain the effect of low dose treatment (< 75 mmol) and in patients not treate...
Resumo:
Criteria for the staging and grading of neuroendocrine tumors (NETs) of midgut and hindgut origin were established at the second Consensus Conference in Frascati (Rome) organized by the European Neuroendocrine Tumor Society (ENETS). The proposed tumor-node-metastasis (TNM) classifications are based on the recently published ENETS Guidelines for the Diagnosis and Treatment of gastroenteropancreatic NETs and follow our previous proposal for foregut tumors. The new TNM classifications for NETs of the ileum, appendix, colon, and rectum, and the grading system were designed, discussed, and consensually approved by all conference participants. These proposals need to be validated and are meant to help clinicians in the stratification, treatment and follow-up of patients.
Resumo:
OBJECTIVE: Anemia is a common comorbid condition in various inflammatory states and an established predictor of mortality in patients with chronic heart failure, ischemic heart disease, and end-stage renal disease. The present study of patients with abdominal aortic aneurysm (AAA) undergoing endovascular repair (EVAR) assessed the relationships between baseline hemoglobin concentration and AAA size, as well as anemia and long-term survival. METHODS: Between March 1994 and November 2006, 711 patients (65 women, mean age 75.8 +/- 7.8 years) underwent elective EVAR. Anemia was defined as a hemoglobin level <13 g/dL in men and <12 g/dL in women. Post-EVAR mean follow-up was 48.3 +/- 32.0 months. Association of hemoglobin level with AAA size was assessed with multiple linear regression. Mortality was determined with use of the internet-based Social Security Death Index and the electronic hospital record. Kaplan-Meier survival curves of anemic and nonanemic patient groups were compared by the log-rank method. Multivariable logistic regression models were used to determine the influence of anemia on vital status after EVAR. RESULTS: A total of 218/711 (30.7%) of AAA patients undergoing EVAR had anemia at baseline. After adjustment for various risk factors, hemoglobin level was inversely related to maximum AAA diameter (beta: - .144, 95%-CI: -1.482 - .322, P = .002). Post-EVAR survival was 65.5% at 5 years and 44.4% at 10 years. In long-term follow-up, survival was significantly lower in patients with anemia as compared to patients without anemia (P < .0001 by log-rank). Baseline hemoglobin levels were independently related to long-term mortality in multivariable Cox regression analysis adjusted for various risk factors (adjusted HR: 0.866, 95% CI: .783 to .958, P = .005). Within this model, statin use (adjusted HR: .517, 95% CI: .308 to .868, P = .013) was independently related to long-term survival, whereas baseline AAA diameter (adjusted HR: 1.022, 95% CI: 1.009 to 1.036, P = .001) was an independently associated with increased mortality. CONCLUSIONS: Baseline hemoglobin concentration is independently associated with AAA size and reduced long-term survival following EVAR. Thus, the presence or absence of anemia offers a potential refinement of existing risk stratification instruments.
Resumo:
Acute coronary syndromes represent a broad spectrum of ischemic myocardial events including unstable angina, non-ST elevation myocardial infarction and acute ST elevation myocardial infarction, which are associated with high morbidity and mortality. They constitute the most frequent cause of hospital admission related to cardiac disease. Early diagnosis and risk stratification are essential for initiation of optimal medical and invasive management. Therapeutic measures comprise aggressive antiplatelet, antithrombotic, and anti-ischemic agents. In addition, patients with high-risk features, notably positive troponin, ST segment changes and diabetes, benefit from an early invasive as compared to a conservative strategy. Importantly, lifestyle interventions, modification of the risk factor profile, and long-term medical treatment are of pivotal importance in reducing the long-term risk of recurrence.
Resumo:
BACKGROUND: Mannose-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) are key components of the lectin pathway of complement activation. Their serum concentrations show a wide interindividual variability. This study investigated whether the concentration of MBL and MASP-2 is associated with prognosis in pediatric patients with cancer. METHODS: In this retrospective multicenter study, MBL and MASP-2 were measured by commercially available ELISA in frozen remnants of serum taken at diagnosis. Associations of overall survival (OS) and event-free survival (EFS) with MBL and MASP-2 were assessed by multivariate Cox regression accounting for prognostically relevant clinical variables. RESULTS: In the 372 patients studied, median serum concentration of MBL was 2,808 microg/L (range, 2-10,060) and 391 microg/L (46-2,771) for MASP-2. The estimated 4-year EFS was 0.60 (OS, 0.78). In the entire, heterogeneous sample, MBL and MASP-2 were not significantly associated with OS or EFS. In patients with hematologic malignancies, however, higher MASP-2 was associated with better EFS in a significant and clinically relevant way (hazard ratio per tenfold increase (HR), 0.22; 95% CI, 0.09-0.54; P = 0.001). This was due to patients with lymphoma (HR, 0.11; 95% CI, 0.03-0.47; P = 0.003), but less for those with acute leukemia (HR, 0.35; 95% CI, 0.11-1.15; P = 0.083). CONCLUSION: In this study, higher MASP-2 was associated with better EFS in pediatric patients with hematologic malignancies, especially lymphoma. Whether MASP-2 is an independent prognostic factor affecting risk stratification and anticancer therapy needs to be assessed in prospective, disease-specific studies.
Resumo:
Karyotype analysis of acute lymphoblastic leukemia (ALL) at diagnosis has provided valuable prognostic markers for treatment stratification. However, reports of cytogenetic studies of relapsed ALL samples are limited. We compared the karyotypes from 436 nonselected B-cell precursor ALL patients at initial diagnosis and of 76 patients at first relapse. We noticed a relative increase of karyotypes that did not fall into the classic ALL cytogenetic subgroups (high hyperdiploidy, t(12;21), t(9;22), 11q23, t(1;19), <45 chromosomes) in a group of 29 patients at relapse (38%) compared to 130 patients at presentation (30%). Non-classical cytogenetic aberrations in these 29 patients were mostly found on chromosomes 1, 2, 7, 9, 13, 14, and 17. We also describe six rare reciprocal translocations, three of which involved 14q32. The most frequent abnormalities were found in 9p (12/29 cases) and were associated with a marked decrease in the duration of the second remission, but not of the probability of 10-year event-free survival after relapse treatment. From 29 patients with non-classical cytogenetic aberrations, only 8 (28%) had been stratified to a high risk-arm on the first treatment protocol, suggesting that this subgroup might benefit from the identification of new prognostic markers in future studies.
Resumo:
PURPOSE: To use magnetization transfer (MT) imaging in the visualization of healthy articular cartilage and cartilage repair tissue after different cartilage repair procedures, and to assess global as well as zonal values and compare the results to T2-relaxation. MATERIALS AND METHODS: Thirty-four patients (17 after microfracture [MFX] and 17 after matrix-associated autologous cartilage transplantation [MACT]) were examined with 3T MRI. The MT ratio (MTR) was calculated from measurements with and without MT contrast. T2-values were evaluated using a multiecho, spin-echo approach. Global (full thickness of cartilage) and zonal (deep and superficial aspect) region-of-interest assessment of cartilage repair tissue and normal-appearing cartilage was performed. RESULTS: In patients after MFX and MACT, the global MTR of cartilage repair tissue was significantly lower compared to healthy cartilage. In contrast, using T2, cartilage repair tissue showed significantly lower T2 values only after MFX, whereas after MACT, global T2 values were comparable to healthy cartilage. For zonal evaluation, MTR and T2 showed a significant stratification within healthy cartilage, and T2 additionally within cartilage repair tissue after MACT. CONCLUSION: MT imaging is capable and sensitive in the detection of differences between healthy cartilage and areas of cartilage repair and might be an additional tool in biochemical cartilage imaging. For both MTR and T2 mapping, zonal assessment is desirable.
Resumo:
INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.
Resumo:
The seasonal appearance of a deep chlorophyll maximum (DCM) in Lake Superior is a striking phenomenon that is widely observed; however its mechanisms of formation and maintenance are not well understood. As this phenomenon may be the reflection of an ecological driver, or a driver itself, a lack of understanding its driving forces limits the ability to accurately predict and manage changes in this ecosystem. Key mechanisms generally associated with DCM dynamics (i.e. ecological, physiological and physical phenomena) are examined individually and in concert to establish their role. First the prevailing paradigm, “the DCM is a great place to live”, is analyzed through an integration of the results of laboratory experiments and field measurements. The analysis indicates that growth at this depth is severely restricted and thus not able to explain the full magnitude of this phenomenon. Additional contributing mechanisms like photoadaptation, settling and grazing are reviewed with a one-dimensional mathematical model of chlorophyll and particulate organic carbon. Settling has the strongest impact on the formation and maintenance of the DCM, transporting biomass to the metalimnion and resulting in the accumulation of algae, i.e. a peak in the particulate organic carbon profile. Subsequently, shade adaptation becomes manifest as a chlorophyll maximum deeper in the water column where light conditions particularly favor the process. Shade adaptation mediates the magnitude, shape and vertical position of the chlorophyll peak. Growth at DCM depth shows only a marginal contribution, while grazing has an adverse effect on the extent of the DCM. The observed separation of the carbon biomass and chlorophyll maximum should caution scientists to equate the DCM with a large nutrient pool that is available to higher trophic levels. The ecological significance of the DCM should not be separated from the underlying carbon dynamics. When evaluated in its entirety, the DCM becomes the projected image of a structure that remains elusive to measure but represents the foundation of all higher trophic levels. These results also offer guidance in examine ecosystem perturbations such as climate change. For example, warming would be expected to prolong the period of thermal stratification, extending the late summer period of suboptimal (phosphorus-limited) growth and attendant transport of phytoplankton to the metalimnion. This reduction in epilimnetic algal production would decrease the supply of algae to the metalimnion, possibly reducing the supply of prey to the grazer community. This work demonstrates the value of modeling to challenge and advance our understanding of ecosystem dynamics, steps vital to reliable testing of management alternatives.
Resumo:
Complex human diseases are a major challenge for biological research. The goal of my research is to develop effective methods for biostatistics in order to create more opportunities for the prevention and cure of human diseases. This dissertation proposes statistical technologies that have the ability of being adapted to sequencing data in family-based designs, and that account for joint effects as well as gene-gene and gene-environment interactions in the GWA studies. The framework includes statistical methods for rare and common variant association studies. Although next-generation DNA sequencing technologies have made rare variant association studies feasible, the development of powerful statistical methods for rare variant association studies is still underway. Chapter 2 demonstrates two adaptive weighting methods for rare variant association studies based on family data for quantitative traits. The results show that both proposed methods are robust to population stratification, robust to the direction and magnitude of the effects of causal variants, and more powerful than the methods using weights suggested by Madsen and Browning [2009]. In Chapter 3, I extended the previously proposed test for Testing the effect of an Optimally Weighted combination of variants (TOW) [Sha et al., 2012] for unrelated individuals to TOW &ndash F, TOW for Family &ndash based design. Simulation results show that TOW &ndash F can control for population stratification in wide range of population structures including spatially structured populations, is robust to the directions of effect of causal variants, and is relatively robust to percentage of neutral variants. In GWA studies, this dissertation consists of a two &ndash locus joint effect analysis and a two-stage approach accounting for gene &ndash gene and gene &ndash environment interaction. Chapter 4 proposes a novel two &ndash stage approach, which is promising to identify joint effects, especially for monotonic models. The proposed approach outperforms a single &ndash marker method and a regular two &ndash stage analysis based on the two &ndash locus genotypic test. In Chapter 5, I proposed a gene &ndash based two &ndash stage approach to identify gene &ndash gene and gene &ndash environment interactions in GWA studies which can include rare variants. The two &ndash stage approach is applied to the GAW 17 dataset to identify the interaction between KDR gene and smoking status.
Resumo:
The developmental processes and functions of an organism are controlled by the genes and the proteins that are derived from these genes. The identification of key genes and the reconstruction of gene networks can provide a model to help us understand the regulatory mechanisms for the initiation and progression of biological processes or functional abnormalities (e.g. diseases) in living organisms. In this dissertation, I have developed statistical methods to identify the genes and transcription factors (TFs) involved in biological processes, constructed their regulatory networks, and also evaluated some existing association methods to find robust methods for coexpression analyses. Two kinds of data sets were used for this work: genotype data and gene expression microarray data. On the basis of these data sets, this dissertation has two major parts, together forming six chapters. The first part deals with developing association methods for rare variants using genotype data (chapter 4 and 5). The second part deals with developing and/or evaluating statistical methods to identify genes and TFs involved in biological processes, and construction of their regulatory networks using gene expression data (chapter 2, 3, and 6). For the first part, I have developed two methods to find the groupwise association of rare variants with given diseases or traits. The first method is based on kernel machine learning and can be applied to both quantitative as well as qualitative traits. Simulation results showed that the proposed method has improved power over the existing weighted sum method (WS) in most settings. The second method uses multiple phenotypes to select a few top significant genes. It then finds the association of each gene with each phenotype while controlling the population stratification by adjusting the data for ancestry using principal components. This method was applied to GAW 17 data and was able to find several disease risk genes. For the second part, I have worked on three problems. First problem involved evaluation of eight gene association methods. A very comprehensive comparison of these methods with further analysis clearly demonstrates the distinct and common performance of these eight gene association methods. For the second problem, an algorithm named the bottom-up graphical Gaussian model was developed to identify the TFs that regulate pathway genes and reconstruct their hierarchical regulatory networks. This algorithm has produced very significant results and it is the first report to produce such hierarchical networks for these pathways. The third problem dealt with developing another algorithm called the top-down graphical Gaussian model that identifies the network governed by a specific TF. The network produced by the algorithm is proven to be of very high accuracy.
Resumo:
BACKGROUND: Durability of protection and long-term quality of life (QoL) are critical outcome parameters of abdominal aortic aneurysm (AAA) repair. The aim of the present study was to compare results of endovascular and open aneurysm repair (EVAR and OR) with adjusted standard populations, including stratification for urgency of presentation. METHODS: Retrospective analysis of prospectively collected data of 401 consecutive patients presenting with AAA between January 1998 and December 2002. Cross-sectional follow up was 58 +/- 29 months. Patients were grouped into three cohorts: elective EVAR (n = 68), elective OR (n = 244), and emergency OR (including symptomatic and ruptured AAA, n = 89). Endpoints were perioperative (i.e., 30 days or in-hospital) and late mortality rates, as well as long-term QoL as assessed by the Short Form health survey questionnaire (SF-36). RESULTS: Mean age was lower in the elective OR cohort (66 +/- 10 years) than in the EVAR cohort (72 +/- 7 years; p < .05). Perioperative mortality rates were 4.4%, 0.4%, and 10.1%, for the EVAR, elective OR, and emergency OR cohorts, respectively (p < .05). Corresponding cumulative survival rates after 4 years were 67%, 89%, and 69%, respectively. Long-term QoL SF-36 scores were in all cohorts similar to age- and gender-adjusted standard populations, which score between 85 and 115: 99.6 +/- 35.8 (EVAR), 101.3 +/- 32.4 (elective OR), and 100.4 +/- 36.5 (emergency OR). CONCLUSIONS: Long-term QoL is not permanently impaired after AAA repair, but returns in long-term survivors to what would be expected in a standard population. In this respect, differences were found neither between EVAR and OR, nor between elective and emergency repair. Perioperative mortality rates were highest in patients undergoing emergency OR. The outlook for such patients after the perioperative period, however, was similar to that for patients undergoing elective repair.
Resumo:
BACKGROUND: Histopathological risk factors for survival stratification of surgically treated nodal positive prostate cancer patients are poorly defined as reflected by only one category for nodal metastases. METHODS: We evaluated biochemical recurrence-free survival (RFS), disease-specific survival (DSS), and overall survival (OS) in 102 nodal positive, hormone treatment-naïve prostate cancer patients (median age: 65 years, range: 45-75 years; median follow-up 7.7 years, range: 1.0-15.9 years) who underwent radical prostatectomy and standardized extended lymphadenectomy. RESULTS: A significant stratification was possible, with the Gleason score of the primary and virtually all nodal parameters favoring patients with better differentiated primaries and metastases, lower nodal tumor burden, and without extranodal extension of metastases. In multivariate analyses, diameter of the largest metastasis (< or =10 mm vs. >10 mm) was the strongest independent predictor for RFS (P < 0.001), DSS (P < 0.001), and OS (P < 0.001) with a more than quadrupled relative risk of cancer related deaths for patients with larger metastases (Hazard ratio: 4.2, Confidence interval: 2.0-8.9; 5-year RFS/DSS/OS: 18%/57%/54%). The highest 5-year survival rates were seen in patients with micrometastases only (RFS/DSS/OS: 47%/94%/94%). CONCLUSION: The TNM classification's current allocation of only one category for nodal metastases in prostate cancers is unsatisfactory since subgroups with significantly different prognoses can be identified. The diameter of the patient's largest metastasis (< or =10 mm vs. >10 mm) should be used for substaging because of its independent prognostic value. The substage "micrometastasis only" is also useful in nodal positive prostate cancer since it designates the subgroup with the most favorable outcome.
Resumo:
BACKGROUND: The extent to which mortality differs following individual acquired immunodeficiency syndrome (AIDS)-defining events (ADEs) has not been assessed among patients initiating combination antiretroviral therapy. METHODS: We analyzed data from 31,620 patients with no prior ADEs who started combination antiretroviral therapy. Cox proportional hazards models were used to estimate mortality hazard ratios for each ADE that occurred in >50 patients, after stratification by cohort and adjustment for sex, HIV transmission group, number of antiretroviral drugs initiated, regimen, age, date of starting combination antiretroviral therapy, and CD4+ cell count and HIV RNA load at initiation of combination antiretroviral therapy. ADEs that occurred in <50 patients were grouped together to form a "rare ADEs" category. RESULTS: During a median follow-up period of 43 months (interquartile range, 19-70 months), 2880 ADEs were diagnosed in 2262 patients; 1146 patients died. The most common ADEs were esophageal candidiasis (in 360 patients), Pneumocystis jiroveci pneumonia (320 patients), and Kaposi sarcoma (308 patients). The greatest mortality hazard ratio was associated with non-Hodgkin's lymphoma (hazard ratio, 17.59; 95% confidence interval, 13.84-22.35) and progressive multifocal leukoencephalopathy (hazard ratio, 10.0; 95% confidence interval, 6.70-14.92). Three groups of ADEs were identified on the basis of the ranked hazard ratios with bootstrapped confidence intervals: severe (non-Hodgkin's lymphoma and progressive multifocal leukoencephalopathy [hazard ratio, 7.26; 95% confidence interval, 5.55-9.48]), moderate (cryptococcosis, cerebral toxoplasmosis, AIDS dementia complex, disseminated Mycobacterium avium complex, and rare ADEs [hazard ratio, 2.35; 95% confidence interval, 1.76-3.13]), and mild (all other ADEs [hazard ratio, 1.47; 95% confidence interval, 1.08-2.00]). CONCLUSIONS: In the combination antiretroviral therapy era, mortality rates subsequent to an ADE depend on the specific diagnosis. The proposed classification of ADEs may be useful in clinical end point trials, prognostic studies, and patient management.
Resumo:
The purpose of this article was to evaluate the potential of in vivo zonal T2-mapping as a noninvasive tool in the longitudinal visualization of cartilage repair tissue maturation after matrix-associated autologous chondrocyte transplantation (MACT). Fifteen patients were treated with MACT and evaluated cross-sectionally, with a baseline MRI at a follow-up of 19.7 +/- 12.1 months after cartilage transplantation surgery of the knee. In the same 15 patients, 12 months later (31.7 +/- 12.0 months after surgery), a longitudinal 1-year follow-up MRI was obtained. MRI was performed on a 3 Tesla MR scanner; morphological evaluation was performed using a double-echo steady-state sequence; T2 maps were calculated from a multiecho, spin-echo sequence. Quantitative mean (full-thickness) and zonal (deep and superficial) T2 values were calculated in the cartilage repair area and in control cartilage sites. A statistical analysis of variance was performed. Full-tickness T2 values showed no significant difference between sites of healthy cartilage and cartilage repair tissue (p < 0.05). Using zonal T2 evaluation, healthy cartilage showed a significant increase from the deep to superficial cartilage layers (p < 0.05). Cartilage repair tissue after MACT showed no significant zonal increase from deep to superficial cartilage areas during baseline MRI (p > 0.05); however, during the 1-year follow-up, a significant zonal stratification could be observed (p < 0.05). Morphological evaluation showed no significant difference between the baseline and the 1-year follow-up MRI. T2 mapping seems to be more sensitive in revealing changes in the repair tissue compared to morphological MRI. In vivo zonal T2 assessment may be sensitive enough to characterize the maturation of cartilage repair tissue.