983 resultados para tag
Resumo:
Editors' note:Flexible, large-area display and sensor arrays are finding growing applications in multimedia and future smart homes. This article first analyzes and compares current flexible devices, then discusses the implementation, requirements, and testing of flexible sensor arrays.—Jiun-Lang Huang (National Taiwan University) and Kwang-Ting (Tim) Cheng (University of California, Santa Barbara)
Resumo:
The widely used Bayesian classifier is based on the assumption of equal prior probabilities for all the classes. However, inclusion of equal prior probabilities may not guarantee high classification accuracy for the individual classes. Here, we propose a novel technique-Hybrid Bayesian Classifier (HBC)-where the class prior probabilities are determined by unmixing a supplemental low spatial-high spectral resolution multispectral (MS) data that are assigned to every pixel in a high spatial-low spectral resolution MS data in Bayesian classification. This is demonstrated with two separate experiments-first, class abundances are estimated per pixel by unmixing Moderate Resolution Imaging Spectroradiometer data to be used as prior probabilities, while posterior probabilities are determined from the training data obtained from ground. These have been used for classifying the Indian Remote Sensing Satellite LISS-III MS data through Bayesian classifier. In the second experiment, abundances obtained by unmixing Landsat Enhanced Thematic Mapper Plus are used as priors, and posterior probabilities are determined from the ground data to classify IKONOS MS images through Bayesian classifier. The results indicated that HBC systematically exploited the information from two image sources, improving the overall accuracy of LISS-III MS classification by 6% and IKONOS MS classification by 9%. Inclusion of prior probabilities increased the average producer's and user's accuracies by 5.5% and 6.5% in case of LISS-III MS with six classes and 12.5% and 5.4% in IKONOS MS for five classes considered.
Resumo:
As aircraft technology is moving towards more electric architecture, use of electric motors in aircraft is increasing. Axial flux BLDC motors (brushless DC motors) are becoming popular in aero application because of their ability to meet the demand of light weight, high power density, high efficiency and high reliability. Axial flux BLDC motors, in general, and ironless axial flux BLDC motors, in particular, come with very low inductance Owing to this, they need special care to limit the magnitude of ripple current in motor winding. In most of the new more electric aircraft applications, BLDC motor needs to be driven from 300 or 600 Vdc bus. In such cases, particularly for operation from 600 Vdc bus, insulated-gate bipolar transistor (IGBT)-based inverters are used for BLDC motor drive. IGBT-based inverters have limitation on increasing the switching frequency, and hence they are not very suitable for driving BLDC motors with low winding inductance. In this study, a three-level neutral point clamped (NPC) inverter is proposed to drive axial flux BLDC motors. Operation of a BLDC motor driven from three-level NPC inverter is explained and experimental results are presented.
Resumo:
A computational framework for modeling the respiratory motion of lung tumors provides a 4D parametric representation that tracks, analyzes, and models movement to provide more accurate guidance in the planning and delivery of lung tumor radiotherapy.
Resumo:
In orthogonal frequency-division multiple access (OFDMA) on the uplink, the carrier frequency offsets (CFOs) and/or timing offsets (TOs) of other users with respect to a desired user can cause multiuser interference (MUI). Analytically evaluating the effect of these CFO/TO-induced MUI on the bit error rate (BER) performance is of interest. In this paper, we analyze the BER performance of uplink OFDMA in the presence of CFOs and TOs on Rician fading channels. A multicluster multipath channel model that is typical in indoor/ultrawideband and underwater acoustic channels is considered. Analytical BER expressions that quantify the degradation in BER due to the combined effect of both CFOs and TOs in uplink OFDMA with M-state quadrature amplitude modulation (QAM) are derived. Analytical and simulation BER results are shown to match very well. The derived BER expressions are shown to accurately quantify the performance degradation due to nonzero CFOs and TOs, which can serve as a useful tool in OFDMA system design.
Resumo:
Microalgae are emerging as one of the most promising sources of biofuel because of their high photosynthetic efficiency and faster replication as compared to any other energy crops. Although, the concept of using microalgal lipid as a source of fuel is very mature, its approach in benefiting both environmental and energy-related is a frontier research area today. Algal community for the production of lipid depends on the physical, chemical as well as biological variables of aquatic ecosystems. This communication focuses on achieving the lipid haracterization of the microalgal community collected from four wetlands and one agricultural field of Bangalore, Karnataka with a wide range of environmental characteristics. Results reveal significant change in lipid component with change in algal community and chlorophyll content which was explained by community structure analysis and chlorophyll estimation. The presence of Triacyl glycerol (TAG) was examined through thin layer chromatography (TLC). The profile of TAG was further confirmed through Gas chromatography – mass spectroscopy (GC-MS). This study confirms the potential of algal community towards meeting growing demand for alternate sustainable fuel.
Resumo:
This paper presents the results of a study on the effect of alumina nano-fillers on electrical tree growth in epoxy insulation. Treeing experiments were conducted at a fixed ac voltage of 15 kV, 50 Hz on unfilled epoxy samples as well as epoxy nanocomposites with different loadings of alumina nano-fillers. Time for tree inception as well as tree growth patterns were studied. The results show that there is a significant improvement in tree initiation time with the increase in nano-filler loading. Different tree growth patterns as well as slower tree growth with increasing filler loadings were observed in epoxy nanocomposites. The nature of the tree channel and the elemental composition of the material on the inner lining of the tree channels have been studied using SEM imaging and EDAX analysis respectively of the cut section of the tree channels. It has been shown that the type of bonding at the interface has an influence on the electrical tree growth pattern. The nature of the bonding at the interface between the epoxy and the nano-filler has been studied using FTIR spectrometry. Finally the influence of the interface on tree growth phenomena in nanocomposites has been explained by a physical model.
Resumo:
A novel procedure to determine the series capacitance of a transformer winding, based on frequency-response measurements, is reported. It is based on converting the measured driving-point impedance magnitude response into a rational function and thereafter exploiting the ratio of a specific coefficient in the numerator and denominator polynomial, which leads to the direct estimation of series capacitance. The theoretical formulations are derived for a mutually coupled ladder-network model, followed by sample calculations. The results obtained are accurate and its feasibility is demonstrated by experiments on model-coil and on actual, single, isolated transformer windings (layered, continuous disc, and interleaved disc). The authors believe that the proposed method is the closest one can get to indirectly measuring series capacitance.
Resumo:
In this paper, we address the design of codes which achieve modulation diversity in block fading single-input single-output (SISO) channels with signal quantization at the receiver. With an unquantized receiver, coding based on algebraic rotations is known to achieve maximum modulation coding diversity. On the other hand, with a quantized receiver, algebraic rotations may not guarantee gains in diversity. Through analysis, we propose specific rotations which result in the codewords having equidistant component-wise projections. We show that the proposed coding scheme achieves maximum modulation diversity with a low-complexity minimum distance decoder and perfect channel knowledge. Relaxing the perfect channel knowledge assumption we propose a novel channel training/estimation technique to estimate the channel. We show that our coding/training/estimation scheme and minimum distance decoding achieves an error probability performance similar to that achieved with perfect channel knowledge.
Resumo:
Parallel sub-word recognition (PSWR) is a new model that has been proposed for language identification (LID) which does not need elaborate phonetic labeling of the speech data in a foreign language. The new approach performs a front-end tokenization in terms of sub-word units which are designed by automatic segmentation, segment clustering and segment HMM modeling. We develop PSWR based LID in a framework similar to the parallel phone recognition (PPR) approach in the literature. This includes a front-end tokenizer and a back-end language model, for each language to be identified. Considering various combinations of the statistical evaluation scores, it is found that PSWR can perform as well as PPR, even with broad acoustic sub-word tokenization, thus making it an efficient alternative to the PPR system.
Resumo:
Electronic exchanges are double-sided marketplaces that allow multiple buyers to trade with multiple sellers, with aggregation of demand and supply across the bids to maximize the revenue in the market. Two important issues in the design of exchanges are (1) trade determination (determining the number of goods traded between any buyer-seller pair) and (2) pricing. In this paper we address the trade determination issue for one-shot, multi-attribute exchanges that trade multiple units of the same good. The bids are configurable with separable additive price functions over the attributes and each function is continuous and piecewise linear. We model trade determination as mixed integer programming problems for different possible bid structures and show that even in two-attribute exchanges, trade determination is NP-hard for certain bid structures. We also make some observations on the pricing issues that are closely related to the mixed integer formulations.
Resumo:
This study presents a novel magnetic arm-switch-based integrated magnetic circuit for a three-phase series-shunt compensated uninterruptible power supply (UPS). The magnetic circuit acts as a common interacting field for a number of energy ports, viz., series inverter, shunt inverter, grid and load. The magnetic arm-switching technique ensures equivalent series or shunt connection between the inverters. In normal grid mode (stabiliser mode), the series inverter is used for series voltage correction and the shunt one for current correction. The inverters and the load are effectively connected in parallel when the grid power is not available. These inverters are then used to share the load power. The operation of the inverters in parallel is ensured by the magnetic arm-switching technique. This study also includes modelling of the magnetic circuit. A graphical technique called bond graph is used to model the system. In this model, the magnetic circuit is represented in terms of gyrator-capacitors. Therefore the model is also termed as gyrator-capacitor model. The model is used to extract the dynamic equations that are used to simulate the system using MATLAB/SIMULINK. This study also discusses a synchronously rotating reference frame-based control technique that is used for the control of the series and shunt inverters in different operating modes. Finally, the gyrator-capacitor model is validated by comparing the simulated and experimental results.
Resumo:
We consider a network in which several service providers offer wireless access to their respective subscribed customers through potentially multihop routes. If providers cooperate by jointly deploying and pooling their resources, such as spectrum and infrastructure (e.g., base stations) and agree to serve each others' customers, their aggregate payoffs, and individual shares, may substantially increase through opportunistic utilization of resources. The potential of such cooperation can, however, be realized only if each provider intelligently determines with whom it would cooperate, when it would cooperate, and how it would deploy and share its resources during such cooperation. Also, developing a rational basis for sharing the aggregate payoffs is imperative for the stability of the coalitions. We model such cooperation using the theory of transferable payoff coalitional games. We show that the optimum cooperation strategy, which involves the acquisition, deployment, and allocation of the channels and base stations (to customers), can be computed as the solution of a concave or an integer optimization. We next show that the grand coalition is stable in many different settings, i.e., if all providers cooperate, there is always an operating point that maximizes the providers' aggregate payoff, while offering each a share that removes any incentive to split from the coalition. The optimal cooperation strategy and the stabilizing payoff shares can be obtained in polynomial time by respectively solving the primals and the duals of the above optimizations, using distributed computations and limited exchange of confidential information among the providers. Numerical evaluations reveal that cooperation substantially enhances individual providers' payoffs under the optimal cooperation strategy and several different payoff sharing rules.
Resumo:
In this paper studies were carried out on two compact electric discharge plasma sources for controlling nitrogen oxides (NOX) emission in diesel engine exhaust. The plasma sources consist of an old television flyback transformer to generate high frequency high voltage ac (HVAC) and an automobile ignition coil to generate the high voltage pulses (HV Pulse). The compact plasma sources are aimed at retrofitting the existing catalytic converters with electric discharge assisted cleaning technique. To enhance NOX removal efficiency cascaded plasma-adsorbent technique has been used. Studies were reported at different flow rates and load conditions of the diesel engine.