915 resultados para succinate dehydrogenase
Resumo:
The acute, subchronic and chronic toxicities of 2,4- dichlorophenoxyacetic acid (2,4-D) were studied in rats. Animals were exposed acutely (600 mg/kg), subchronically (200 ppm for 30 d) and chronically (200 ppm for 180 d) to 2,4-D by the oral route. Clinical, laboratory and histopathological methods were used as indicators of toxicity. After acute exposure, the herbicide decreased locomotor activity and induced ataxia, sedation, muscular weakness (mainly of the hind quarters) and gasping for breath; increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (AP), amylase activities and creatinine levels; decreased total protein (TP) and glucose levels; and increased hematocrit values. Subchronic and chronic 2,4-D exposures did not induce overt clinical signs or symptoms of intoxication. However, subchronic herbicide exposure increased AST activity and albumin and hematocrit values, and chronic exposure increased AST, AP and LDH activities, decreased amylase and glucose levels, but did not change hematocrit values. Chromatographic analysis of the serum of chronically exposed rats showed the presence of the herbicide; the amount found (3.76 ± 1.16 mg/ml) suggested the absence of 2,4-D accumulation within the body. Although macroscopic or histopathological lesions were not observed in acutely, subchronically or chronically 2,4-D exposed rats, the laboratory data obtained suggest tissue injuries after dosing, since the results are considered early indicators of primarily hepatic and muscle tissue damage.
Resumo:
The role of air pollution as a health risk factor is of special interest. Numerous toxic pollutants, such as nickel, are being released to the environment as a result of combustion of fossil fuels, crude oil, and coal. Nickel in the atmosphere can be combined with other environmental pollutants, producing various nickel compounds, which have varying animal toxicity. A rat biossay validated for the identification of toxic effects of nickel revealed increased serum activities of total lactate dehydrogenase (LDH) and alanine transaminase (ALT) in rats that received intratracheal injection of Ni2+ in .09% saline solution of NiCl2. The total LDH activity was also increased in the heart, and the isoenzyme pattern showed the LDH1/LDH2 ratio elevated to greater than 1. We conclude that intratracheal administration of nickel induced cardiac and hepatic damage. The development of cardiac and hepatic damage and of increased enzymes' activities was only demonstrated when nickel had accumulated in these tissues, indicating that nickel depot is essential to its toxicity. Intratracheal administration of NiCl2 induced changes in LDH and ALT activities.
Resumo:
The final levels of ethanol (levels of ethanol produced plus that added initially to the media) reached by the thermotolerant yeasts were highest (16.5-20.3%, v/v) at 8% initial ethanol. The thermotolerant yeasts were found to have the following characteristics: constant levels of ethanol formation (10.5-12.3%, v/v), fog additions of external ethanol within the range 2-8% (v/v) of initial ethanol; constant values of product coefficients when initial ethanol was in the range of 2-6%, which increased or decreased, depending on the strain, when initial ethanol exceeded 6%; growth activity was inhibited at different levels of addition of external ethanol when final biomass and specific rate of growth were compared; significant differences among the yeast strains in the amount of external ethanol capable of reducing biomass formation by one half. In addition, the viability of the strains (early stationary phase) varied with the amount of external ethanol, the lowest viabilities occurring at concentrations of initial ethanol ranging from 4 to 7% and the highest in the range of 7 to 8% (v/v). The relative levels of trehalose (with/without 7% ethanol added initially) in the yeast strains (the stationary phase) ranged from 1.03 to 1.75, suggesting that the effect of produced ethanol on trehalose accumulation was stronger than that of external ethanol. The levels of final ethanol shown by the yeast strains were also correlated with the cellular levels of glycerol-3-phosphate dehydrogenase (increase in enzyme levels with decrease in final ethanol) for cells harvested at the stationary phase.
Resumo:
Contamination with cadmium compounds poses high potential risk for the health of populations and for this reason the treatment of their toxic effects should urgently be established. The present study was carried out to determine whether α-tocopherol intake can protect tissues against damage induced by cadmium, and to clarify the contribution of superoxide radicals (O 2 -) in this process. Cadmium chloride was tested for tissue damage by a single intraperitoneal injection of Cd 2+ ions (2 mg Kg -1). To determine the potential therapeutic effect of vitamin E, a group of Cd 2+-treated rats received a drinking solution of α-tocopherol (40 mg l -1) for 15 days. Cadmium induced increased serum creatinine and total lactate dehydrogenase, reflecting renal and cardiac damage. The increased lipoperoxide and decreased Cu-Zn superoxide dismutase levels indicated the generation of superoxide radicals in cadmium-treated rats. Tocopherol induced increased serum high-density lipoprotein and depressed the toxic effects of Ca 2+ alone, since creatinine and lactate dehydrogenase determinations were recovered to the control values. Tocopherol decreased lipoperoxide and led the superoxide dismutase activities to approach those of the control values. We concluded that superoxide radicals are produced as mediators of cadmium toxicity. Tocopherol possesses a significant anti-radical activity and inhibits the cadmium effect on superoxide dismutase activity. Tocopherol also protected tissues from the toxic effects of cadmium by a direct antioxidant action which decreased lipoperoxide formation.
Resumo:
The incidence of cardiovascular disease has increased in the general population, and cardiac damage is indicated as one important cause of mortality. In addition, pollution and metal exposure have increased in recent years. For this reason, toxic effects of metals, such as nickel, and their relation to cardiac damage should be urgently established. Although free radical-mediated cellular damage and reactive oxygen species have been theorized as contributing to the nickel mechanism of toxicity, recent investigations have established that free radicals may be important contributors to cardiac dysfunction. However, there is little information on the effect of nickel exposure on markers of oxidative stress in cardiac tissue. Nickel exposure (Ni2+ 100 mg L-1 from NiSO4) significantly increased lipoperoxide and total lipid concentrations in cardiac tissue. We also observed increased serum levels of cholesterol (59%), lactate dehydrogenase (LDH-64%), and alanine transaminase (ALT-30%) in study animals. The biochemical parameters recovered to the control values with tocopherol intake (0.2 mg 200 g-1). Vitamin E alone significantly decreased the lipoperoxide concentration and increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the heart. Since no alterations were observed in catalase and GSH-Px activities by nickel exposure while SOD activities were decreased, we conclude that superoxide radical (O2 -) generated by nickel exposure is of primary importance in the pathogenesis of cardiac damage. Tocopherol, by its antioxidant activity, decreased the toxic effects of nickel exposure on heart of rats.
Resumo:
The presence of toxic substances in the workplace environment requires systematic evaluation of exposure and health status in exposed subjects. Cadmium is a highly toxic element found in water. Although free mediated cellular damage and reactive oxygen species (ROS), had been theorized as contributing to the cadmium mechanism of toxicity, and recent investigations have established that free radicals may be important contributors to cardiac dysfunction, there is little information on the effect of cadmium exposure on markers of oxidative stress in cardiac tissue. Cadmium exposure (Cd2+ - 100 mg/1-from CdCl2) in drinking water, during 15 days, significantly increased lipoperoxide and decreased the activities of superoxide dismutase and glutathione peroxidase. No alterations were observed in catalase activity in heart of rats with cadmium exposure. We also observed decreased glycogen and glucose concentration and increased total lipid content in cardiac tissue of rats with cadmium exposure. The decreased activities of alanine transaminase and aspartate transaminase reflected decreased metabolic protein degradation, and increased lactate dehydrogenase activity was related with increases in capacity of glycolysis. Since the metabolic pathways were altered by cadmium exposure, we can conclude that Cd2+ exposure induced ROS and initiate some series of events that occur in the heart and resulted in metabolic pathways alterations.
Resumo:
Purpose: To determine whether a high energy dense diet intake increases oxidative stress and alters antioxidant enzymes in cardiac tissue. Design: A randomized, controlled study. Ninety-day-old female rats were randomly divided into two groups: one fed with a low energy dense diet (LE; 3.0 kcal g-1) and one with a high energy dense diet (HE; 4.5 kcal g-1). Materials and Methods: After 8 weeks of treatment, the animals were fasted overnight and sacrificed by decapitation. The serum was used for glucose, triacylglycerol, cholesterol, low-density lipoprotein (LDL)-cholesterol and high-density lipoprotein (HDL)-cholesterol determinations. The glycogen, lipoperoxide, lipid hydroperoxide, superoxide dismutase, glutathione peroxidase, lactate dehydrogenase, citrate synthase, total and non-protein sulphhydryl groups were determined in cardiac tissue. Results: HE decreased the myocardial glycogen content and increased the lactate dehydrogenase/citrate synthase ratio, indicating an increased glycolytic pathway and a shift from myocardial aerobic metabolism. HE-treated female rats showed increased lipoperoxide and hydroperoxide levels in cardiac tissue. Although no alterations were observed in the total sulphhydryl group and superoxide dismutase activities, glutathione peroxidase and the non-protein sulphhydryl group were significantly decreased in HE-treated animals. Conclusions: Although no alterations were observed in energy intake, HE induced an increased intake of fat and carbohydrate and an increased rate of weight gain. HE intake induced alterations in markers of oxidative stress in cardiac tissue. Hydrogen peroxide is an important toxic intermediate in the development of cardiac oxidative stress by HE. The specific nutrient content, such as fat and carbohydrate, rather than caloric intake, appears to be the main process inducing oxidative stress in HE-treated female rats.
Resumo:
Purpose: To determine the effect of dietary restriction on metabolic pathways and the relationship of the metabolic shifting on antioxidant enzymes in cardiac tissue. Design: Randomized, controlled study. Male rats at 60 days old were randomly divided into four groups. Materials and Methods: The rats of control groups C30 and C60 were given free access to the diet over 30 and 60 days. The rats of the DR30 group were fed 60% of the chow consumed by the control groups over 30 days. The animals of the DR60 group ate 60% of the amount consumed by the C60 group over 60 days. Serum was used for total protein, lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Protein, glycogen, total lipids, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), LDH, AST and ALT were determined in cardiac tissue. Results: Dietary restriction induced diminished serum and cardiac LDH activities. AST activities were lower in the serum and cardiac muscle of the DR60 animals. Dietary restriction induced elevated total lipid concentrations in cardiac muscle. No significant differences were observed in total protein and glycogen content among the groups. Antioxidant enzyme determinations demonstrated increased cardiac GSH-Px activities in the DR60 animals and increased SOD activities in the cardiac tissue of both feed-restricted groups. Conclusions: Dietary restriction was protective against oxidative stress in the heart by improving cardiac endogenous antioxidant defences and shifting the metabolic pathway for energy production.
Resumo:
Dietary modification ought to be the first line of strategy in prevention of the development of cardiac disease. The purpose of this study was to investigate whether dietary restriction, dietary-fibre-enriched diet, and their interactions might affect antioxidant capacity and oxidative stress in cardiac tissue. Male Wistar rats (180-200 g; n = 10) were divided into four groups: control ad libitum diet (C), 50% restricted diet (DR), fed with fibre-enriched diet (F), and 50% restricted fibre-enriched diet (DR-F). After 35 days of the treatments, F, DR, and DR-F rats showed low cholesterol, LDL-cholesterol, and triacylglycerol, and high HDL-cholesterol in serum. The DR, DR-F, and F groups had decreased myocardial lipoperoxide and lipid hydroperoxide. The DR-F and F treatments increased superoxide dismutase and glutatione peroxidase (GSH-Px). The DR treatment increased GSH-Px and catalase activities. Dietary fibre beneficial effects were related to metabolic alterations. The F and DR-F groups showed high cardiac glycogen and low lactate dehydrogenase/citrate synthase ratios, indicating diminished anaerobic and elevated aerobic myocardial metabolism in these animals. There was no synergistic effect between dietary restriction and dietary fibre addition, since no differences were observed in markers of oxidative stress in the F and DR-F groups. Dietary fibre supplementation, rather than energy intake and dietary restriction, appears to be the main process retarding oxidative stress in cardiac tissue.
Resumo:
The aim of this study was to analyze the morphoquantitative features of the nitrergic myenteric neurons from the body of the stomach of diabetic rats. The body of the stomach of five normoglicemic rats and of five diabetic rats were prepared as whole-mounts stained by the histochemical technique of NADPH-diaphorase. Decreased body weight and increased daily ingestion of water, fast glicemia and glycated hemoglobin were verified in diabetic animals. According to the data obtained, significant difference in the density of nitrergic neurons was not observed between the two groups, but the areas of the neuronal cell body profiles in the diabetic rats were significantly larger. Results showed that the streptozotocin that induced diabetes does not accelerate the death of the nitrergic neurons, but increases the expression of these cells.
Resumo:
Background: Previous experiments have shown that a decoction of Bauhinia forficata leaves reduces the changes in carbohydrate and protein metabolism that occur in rats with streptozotocin-induced diabetes. In the present investigation, the serum activities of enzymes known to be reliable toxicity markers were monitored in normal and streptozotocin-diabetic rats to discover whether the use of B. forficata decoction has toxic effects on liver, muscle or pancreas tissue or on renal microcirculation. Methods: An experimental group of normal and streptozotocin-diabetic rats received an aqueous decoction of fresh B. forficata leaves (150 g/L) by mouth for 33 days while a control group of normal and diabetic rats received water for the same length of time. The serum activity of the toxicity markers lactate dehydrogenase, creatine kinase, amylase, angiotensin-converting enzyme and bilirubin were assayed before receiving B. forficata decoction and on day 19 and 33 of treatment. Results: The toxicity markers in normal and diabetic rats were not altered by the diabetes itself nor by treatment with decoction. Whether or not they received B. forficata decoction the normal rats showed a significant increase in serum amylase activity during the experimental period while there was a tendency for the diabetic rats, both treated and untreated with decoction, to have lower serum amylase activities than the normal rats. Conclusions: Administration of an aqueous decoction of B. forficata is a potential treatment for diabetes and does not produce toxic effects measurable with the enzyme markers used in our study. © 2004 Pepato et al; licensee BioMed Central Ltd.
Resumo:
In this study we investigated the effect of the acetyl-L-carnitine (ALC) supplementation on the myenteric neurons of the jejunum of rats made diabetic at the age of 105 days by streptozotocin (35 mg/kg body weight). Four groups were used: non-diabetic (C), non-diabetic supplemented with ALC (CC), diabetic (D), diabetic supplemented with ALC (DC). After 15 weeks of diabetes induction the blood was collected by cardiac puncture to evaluate glycaemia and glycated haemoglobin. Next the animals were killed and the jejunum was collected and subjected to whole-mount preparation to evidence the myenteric neurons through the histochemical technique of the NADH-diaphorase. The neuronal counts were made in 80 microscopic fields, in tissue samples of five animals of each group. The profiles of the cell bodies of 1000 neurons per group were analysed. Diabetes induced a significant increase in the area of the cell body and decrease in the number of NADH-diaphorase positive myoenteric neurons. ALC suplementation to the diabetic group promoted smaller hypertrophic effects and less neuronal loss than in the myoenteric neurons of the diabetic rats, and in addition diminished the body weight decrease and reduced the fasting glycaemia. © 2005 Blackwell Verlag.
Resumo:
Objective - To compare hemodynamic, clinicopathologic, and gastrointestinal motility effects and recovery characteristics of halothane and isoflurane in horses undergoing arthroscopic surgery. Animals - 8 healthy adult horses. Procedure - Anesthesia was maintained with isoflurane or halothane (crossover study). At 6 intervals during anesthesia and surgery, cardiopulmonary variables and related derived values were recorded. Recovery from anesthesia was assessed; gastrointestinal tract motility was subjectively monitored for 72 hours after anesthesia. Horses were administered chromium, and fecal chromium concentration was used to assess intestinal transit time. Venous blood samples were collected for clinicopathologic analyses before and 2, 24, and 48 hours after anesthesia. Results - Compared with halothane-anesthetized horses, cardiac index, oxygen delivery, and heart rate were higher and systemic vascular resistance was lower in isoflurane-anesthetized horses. Mean arterial blood pressure and the dobutamine dose required to maintain blood pressure were similar for both treatments. Duration and quality of recovery from anesthesia did not differ between treatments, although the recovery periods were somewhat shorter with isoflurane. After isoflurane anesthesia, gastrointestinal motility normalized earlier and intestinal transit time of chromium was shorter than that detected after halothane anesthesia. Compared with isoflurane, halothane was associated with increases in serum aspartate transaminase and glutamate dehydrogenase activities, but there were no other important differences in clinicopathologic variables between treatments. Conclusions and clinical relevance - Compared with halothane, isoflurane appears to be associated with better hemodynamic stability during anesthesia, less hepatic and muscle damage, and more rapid return of normal intestinal motility after anesthesia in horses undergoing arthroscopic procedures.
Resumo:
Purpose: To evaluate the influence of water bath and microwave postpolymerization treatments on the cytotoxicity of 6 hard reline acrylic resins. Materials and Methods: The materials tested were Tokuso Rebase Fast (TR), Ufi Gel Hard (UGH), Duraliner II (D), Kooliner (K), New Truliner (NT), and Light Liner (LL). LL resin was additionally tested with an air-barrier coating (LLABC). Nine disks of each material (10 × 1 mm) were made and divided into 3 groups: group 1 (no postpolymerization treatment); group 2 (postpolymerization in microwave oven); group 3 (postpolymerization in water bath at 55°C for 10 minutes). L929 cells were cultured in 96-well plates and incubated for 24 hours in Eagle's medium. Eluates prepared from the disks or medium without disks (control) replaced the medium. Cytotoxicity was assessed by both dehydrogenase succinic activity (MTT) assay and incorporation of radioactive 3H-thymidine assay. Tests were carried out in quadruplicate and repeated twice. Differences between groups were determined by analysis of variance with Tukey multiple-comparison intervals (α = .05). Results: For MTT assay, the postpolymerization treatments had no effect on the cytotoxicity of all materials (P > .05). For 3H-thymidine assay, the postpolymerization treatments significantly decreased the cytotoxicity of UGH (P < .05). The cytotoxicity of K, NT, LL, and LLABC increased after microwave irradiation (P < .05). TR, NT, and LLABC showed an increase in cytotoxicity after water bath (P < .05). Conclusion: When assessed by MTT assay, the cytotoxicity of the materials was not affected by postpolymerization treatments. 3H-Thymidine assay showed that the cytotoxicity of the resins was not improved by the postpolymerization treatments, with the exception of UGH.
Resumo:
The synthesis of intracellular glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) in baker's yeast was investigated in submerged culture supplied with glucose or glycerol as sole carbon sources. Inhibitors of the glycolytic pathway, Krebs cycle and respiratory chain did not stimulate glycerol-3-phosphate dehydrogenase synthesis when added in low concentrations in up 7.5 × 10 -5 mol/L. The repression exercised by glucose on the synthesis of glycerol-3-phosphate dehydrogenase in YP-glucose medium was reduced by the addition of fermentation products and of sodium bisulfite. Synthesis of the enzyme was raised 22-110%. However, in YP-glycerol medium, the addition of 0.06% (w/v) sodium bisulfite reduced (29%) the synthesis of the enzyme, while 0.012% (v/v) acetaldehyde stimulated the synthesis of glycerol-3-phosphate dehydrogenase by 12%.