958 resultados para static structure factor
Resumo:
The aim of the present research was to provide school psychologists with valid instruments with which to assess the goals and reputations of young children. This was achieved by ascertaining whether the factor structures and the second-order factor models of the high school versions of the Importance of Goals (Carroll, et al., 1997) and Reputation Enhancement Scales (Carroll, et al., 1999) could be replicated with a primary school sample. Eight hundred and eighty-six 10 to 12 year old children were administered modified versions of the two scales, which were combined and renamed the Children's Activity Questionnaire. For the two scales, the factor structure proved replicable and reliable with the primary school sample. A comparison between the factor loadings of the primary school and the high school samples using the coefficient of congruence procedure demonstrated similarity indicating that the scales are replicable and able to be used with a younger primary school sample. Structural equation modelling indicated that the second-order factor structure of the Importance of Goals Scale was acceptable but this was not the case for the second-order factor structure of the Reputation Enhancement Scale.
Resumo:
Strain-dependent hydraulic conductivities are uniquely defined by an environmental factor, representing applied normal and shear strains, combined with intrinsic material parameters representing mass and component deformation moduli, initial conductivities, and mass structure. The components representing mass moduli and structure are defined in terms of RQD (rock quality designation) and RMR (rock mass rating) to represent the response of a whole spectrum of rock masses, varying from highly fractured (crushed) rock to intact rock. These two empirical parameters determine the hydraulic response of a fractured medium to the induced-deformations The constitutive relations are verified against available published data and applied to study one-dimensional, strain-dependent fluid flow. Analytical results indicate that both normal and shear strains exert a significant influence on the processes of fluid flow and that the magnitude of this influence is regulated by the values of RQD and RMR.
Resumo:
The reproductive system of many female Therevidae has a sac-like structure associated with the spermathecae. This structure, termed the spermathecal sac, has not been recorded previously from any other Diptera and appears unique to certain members of the Therevidae. There is enormous variety in spermathecal sac size and shape, with greatest development in the Australasian Therevidae. A histological examination of the reproductive system of two;Australian therevids, Agapophytus albobasalis Mann and Ectinorhynchus variabilis (Macquart) (Diptera: Asiloidea), reveals that the spermathecal sacs are cuticle-lined and that the intima is frequently highly folded. In some mated individuals, sperm was found within the spermathecal sac, suggesting that sperm and perhaps male accessory gland material is deposited there during copulation. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper we give a complete solution to problem of determining the number of 4-cycles in a 2-factorization of K-2n\ 1-factor. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Retrovirus entry into cells follows receptor binding by the surface exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.
Resumo:
Previously, two binding sites for interleukin 5 (IL-5) were identified on the IL-5 receptor alpha chain (IL-5R alpha). They are located within the CD loop of the first fibronectin type III (FnIII)-like domain and the EF loop of the second FnIII-like domain. The first binding site was identified by exploiting the different abilities of human IL-5R alpha (hIL-5R alpha) and mouse IL-5R alpha (mIL-5R alpha) to bind hIL-5. Here we show that ovine IL-5 (oIL-5) has the ability to activate the hIL-5R alpha but not the mIL-5R alpha. By using chimeras of the mIL-5R alpha and hIL-5R alpha we demonstrate that residues within the first and third FnIII-like domains of mIL-5R alpha are responsible for this lack of activity. Furthermore, mutation of residues on hIL-5R alpha to mIL-5R alpha within the predicted DE and FG loop regions of the third FnIII domain reduces oIL-5 activity, These results show that regions of the third FnIII domain of IL-5R alpha are involved in binding, in addition to the regions in domains one and two of the IL-5R alpha that were identified in an earlier study. (C) 2000 Academic Press.
Resumo:
In this paper necessary and sufficient conditions for a vector to be the fine structure of a balanced ternary design with block size 3, index 3 and rho(2) = 1 and 2 are determined with one unresolved case.
Resumo:
We have shown that 44 amino acid residues N-terminal segment of kappa-casein exhibits considerable a-helical structure. This prompted us to investigate the structures of the remaining segments of kappa-casein. Thus, in this study the chemical synthesis and structure elucidation of the peptide 45-87 amino acid residues of kappa-casein is reported. The peptide was assembled using solid phase peptide synthesis methodology on pam resin, cleaved via HF, freeze dried and, after purification, characterised by mass spectrometry (observed m/z 4929; calculated mit 4929.83). The amino acid sequence of the peptide is: CKPVALINNQFLPYPYYAKPAAVRSPAQILQWQVLSNTVPAKA Its structure elucidation has been carried out using circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques. CD spectrum of the peptide shows it to be a random structure in water but in 30% trifluoroethanol the peptide exhibits considerable structure. The 1D and 2D NMR spectra corroborated the results of CD. The structure elucidation of the peptide using TOCSY and NOESY NMR techniques will be discussed.
Resumo:
We previously described significant changes in GH-binding protein (GHBP) in pathological human pregnancy. There was a substantial elevation of GHBP in cases of noninsulin-dependent diabetes mellitus and a reduction in insulin-dependent diabetes mellitus. GHBP has the potential to modulate the proportion of free placental GH (PGH) and hence the impact on the maternal GH/insulin-like growth factor I (IGF-I) axis, fetal growth, and maternal glycemic status. The present study was undertaken to investigate the relationship among glycemia, GHBP, and PGH during pregnancy and to assess the impact of GHBP on the concentration of free PGH. We have extended the analysis of specimens to include measurements of GHBP, PGH, IGF-I, IGF-II, IGF-binding protein-1 (IGFBP-1), IGFSP-2, and IGFBP-3 and have related these to maternal characteristics, fetal growth, and glycemia. The simultaneous measurement of GHBP and PGH has for the first time allowed calculation of the free component of PGH and correlation of the free component to indexes of fetal growth and other endocrine markers. PGH, free PGH, IGF-I, and IGF-II were substantially decreased in IUGR at 28-30 weeks gestation (K28) and 36-38 weeks gestation (K36). The mean concentration (+/-SEM) of total PGH increased significantly from K28 to K36 (30.0 +/- 2.2 to 50.7 +/- 6.2 ng/mL; n = 40), as did the concentration of free PGH (23.4 +/- 2.3 to 43.7 +/- 6.0 ng/mL; n = 38). The mean percentage of free PGH was significantly less in IUGR than in normal subjects (67% vs. 79%; P < 0.01). Macrosomia was associated with an increase in these parameters that did not reach statistical significance. Multiple regression analysis revealed that PGH/IGF-I and IGFBP-5 account for 40% of the variance in birth weight. IGFBP-3 showed a significant correlation with IGF-I, IGF-II, and free and total PGK at K28 and K36. Noninsulin-dependent diabetes mellitus patients had a lower mean percentage of free PGH (65%; P < 0.01), and insulin-dependent diabetics had a higher mean percentage of free PGH (87%; P < 0.01) than normal subjects. Mean postprandial glucose at K28 correlated positively with PGH and free PGH (consistent with the hyperglycemic action of GH). GHBP correlated negatively with both postprandial and fasting glucose. Although GHBP correlated negatively with PGH (r = -0.52; P
Resumo:
The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D H-1 NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and mu O-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18 +/- 0.05 Angstrom for the backbone atoms and 1.39 +/- 0.33 Angstrom for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.
Resumo:
A magnesium-aluminium alloy of eutectic composition was solidified under two different cooling conditions, producing a low and a high growth rate of the eutectic solid-liquid interface. The high growth rate specimen contained smaller eutectic grains and cells, with a smaller interphase spacing compared with the low growth rate specimen. The high growth rate specimen also contained some primary Mg17Al12 dendrites, suggesting that the coupled zone is skewed towards the Mg phase with increased undercooling, A lamellar eutectic morphology was observed in the low growth rate specimen, while the morphology was fibrous in the high growth rate specimen.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
The aim of this investigation was to elucidate the roles of insulin-like growth factor-I (IGF-I) and transferrin in the survival and proliferation of Chinese hamster ovary (CHO) cells upon withdrawal of serum. For this purpose, we employed DNA analysis and now cytometry to compare CHO cell lines expressing either IGF-I alone or IGF-I and transferrin. The ability of cells to cycle and the occurrence of apoptosis were monitored in these cells in serum-free medium. These results indicate that IGF-I alone is able to maintain the viability of CHO cells for an extended length of time in the absence of serum. Transferrin alone does not promote survival or proliferation. Only in the presence of both IGF-I and transferrin do cells survive and proliferate. Therefore, in attached CHO cultures, IGF-I alone does not stimulate cell proliferation but is a requirement for growth in serum-free medium in cooperation with transferrin. We report on the dual role of IGF-I as a survival factor in CHO cells and its interlocking role with transferrin to stimulate cell growth.