996 resultados para standard batch algorithms
Resumo:
Background: Compared with the postprandial events after a single meal, different events occur when a second meal is ingested 4–6 h after a first meal. There is a rapid appearance of chylomicrons in the circulation carrying fat ingested with the first meal, with a peak 1 h after the second meal. Objective: Our goal was to examine whether different dietary oils have effects on the storage of triacylglycerol as a result of differences in their digestion, absorption, and incorporation into chylomicrons. Design: A single-blind, randomized, within-subject crossover design was used to study the effects of palm oil, safflower oil, a mixture of fish and safflower oil, and olive oil on postprandial apolipoprotein (apo) B-48, retinyl ester, and triacylglycerol in the Sf > 400 fraction with the use of a sequential meal protocol. Results: For triacylglycerol, retinyl ester, and apo B-48, the time to reach peak concentration was significantly earlier after the second meal than after the first meal (P < 0.005). This was apparent with each of the dietary oils. The pattern of the apo B-48 response differed significantly among the dietary oils, with olive oil resulting in higher concentrations after both meals (P = 0.003). The ratio of triacylglycerol to apo B-48 was significantly lower after olive oil feeding than after feeding with the other oils (P = 0.02). Conclusions: The rapid entry of chylomicrons after the ingestion of a second meal 5 h after a first meal was seen with all of the oils investigated. The short-term ingestion of olive oil produced more chylomicrons than did the other dietary oils, which may have been due to differences in the metabolic handling of olive oil within the gut.
Resumo:
Where users are interacting in a distributed virtual environment, the actions of each user must be observed by peers with sufficient consistency and within a limited delay so as not to be detrimental to the interaction. The consistency control issue may be split into three parts: update control; consistent enactment and evolution of events; and causal consistency. The delay in the presentation of events, termed latency, is primarily dependent on the network propagation delay and the consistency control algorithms. The latency induced by the consistency control algorithm, in particular causal ordering, is proportional to the number of participants. This paper describes how the effect of network delays may be reduced and introduces a scalable solution that provides sufficient consistency control while minimising its effect on latency. The principles described have been developed at Reading over the past five years. Similar principles are now emerging in the simulation community through the HLA standard. This paper attempts to validate the suggested principles within the schema of distributed simulation and virtual environments and to compare and contrast with those described by the HLA definition documents.
Resumo:
A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimisation and Parameter Estimation (DISOPE) which has been designed to achieve the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A method based on Broyden's ideas is used for approximating some derivative trajectories required. Ways for handling con straints on both manipulated and state variables are described. Further, a method for coping with batch-to- batch dynamic variations in the process, which are common in practice, is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch processes. The algorithm is success fully applied to a benchmark problem consisting of the input profile optimisation of a fed-batch fermentation process.
Resumo:
A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses dynamic integrated system optimisation and parameter estimation (DISOPE) which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A new method for approximating some Jacobian trajectories required by the algorithm is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch chemical processes.
Resumo:
A novel optimising controller is designed that leads a slow process from a sub-optimal operational condition to the steady-state optimum in a continuous way based on dynamic information. Using standard results from optimisation theory and discrete optimal control, the solution of a steady-state optimisation problem is achieved by solving a receding-horizon optimal control problem which uses derivative and state information from the plant via a shadow model and a state-space identifier. The paper analyzes the steady-state optimality of the procedure, develops algorithms with and without control rate constraints and applies the procedure to a high fidelity simulation study of a distillation column optimisation.
Resumo:
Two so-called “integrated” polarimetric rate estimation techniques, ZPHI (Testud et al., 2000) and ZZDR (Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term “integrated” means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h−1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R^1.66), a -19% underestimation with ZPHI and a +23% overestimation with ZZDR. Additionally, a +0.2 dB positive bias on ZDR results in a typical rain rate under- estimation of 15% by ZZDR.
Resumo:
We present some additions to a fuzzy variable radius niche technique called Dynamic Niche Clustering (DNC) (Gan and Warwick, 1999; 2000; 2001) that enable the identification and creation of niches of arbitrary shape through a mechanism called Niche Linkage. We show that by using this mechanism it is possible to attain better feature extraction from the underlying population.
Resumo:
Across the world there are many bodies currently involved in researching into the design of autonomous guided vehicles (AGVs). One of the greatest problems at present however, is that much of the research work is being conducted in isolated groups, with the resulting AGVs sensor/control/command systems being almost completely nontransferable to other AGV designs. This paper describes a new modular method for robot design which when applied to AGVs overcomes the above problems. The method is explained here with respect to all forms of robotics but the examples have been specifically chosen to reflect typical AGV systems.
Resumo:
The authors consider the problem of a robot manipulator operating in a noisy workspace. The manipulator is required to move from an initial position P(i) to a final position P(f). P(i) is assumed to be completely defined. However, P(f) is obtained by a sensing operation and is assumed to be fixed but unknown. The authors approach to this problem involves the use of three learning algorithms, the discretized linear reward-penalty (DLR-P) automaton, the linear reward-penalty (LR-P) automaton and a nonlinear reinforcement scheme. An automaton is placed at each joint of the robot and by acting as a decision maker, plans the trajectory based on noisy measurements of P(f).