891 resultados para spray irrigation
Resumo:
Megaprojects are described as large, complex and expensive construction projects. Recent studies have shown that megaprojects often result in cost overruns, time extensions and undesired outcomes. Regardless, megaprojects are common, particularly in developing countries, as they are a trigger for social and economic development (Li et al., 2010). Since 2007, the Government of Ecuador has begun an unprecedent investment in infrastructure. Through the National Water Secretary, the government has 16 projects in agenda accounting for over $ 3 billion, with 6 projects currently under construction. These projects are considered flagship infrastructure in the endeavour to enhance the country´s productivity.The Bulubulu-Naranjal-Cañar project, a $406 million multi-purpose hydraulic project for irrigation and flood control, consists of over 1,000 activities and was proposed to be completed by 2015. This novel project for Ecuador, presented as a case study, represents a challenge for project management and financing. The purpose of this preliminary study is to provide an insight to megaproject management in Ecuador, and propose improvements to megaproject management through optimization of stochastic project schedules.
Resumo:
2 x 2.5 metre text based wall painting with a hidden automatic air freshener timed to spray every 60 seconds. The work formed part of a group exhibition that dealt with Humour,Politics and Art. It was part of a series of ongoing works made under the pseudonym Eve Roleston. Roleston is part of a trio of pseudonyms I use, the others being Ernesto Love, and Ernest Olove, to explore the research potential of the fictocritical in a visual arts practice.This forms part of an ongoing body of practice-led research undertaken in my PhD dealing with reconfiguring the relationship between art and politics.
Resumo:
This study developed an understanding of hydrological processes within the Cressbrook Creek catchment of the upper Brisbane River, in particular for the alluvial aquifers. Those aquifers within the lower catchment are used for intensive irrigation, and have been impacted by long-term drought followed by flooding. The study utilised water chemistry, isotopic characters and hydraulic measurements to determine factors such as recharge, links between creeks and groundwater, and variations in water quality. The catchment-wide study will enable improved management of the local water resources.
Resumo:
Zinc-rich ethyl silicate coatings are quite successful in protecting steel against corrosion under severe exposing conditions. In spite of providing excellent cathodic protection to steel structure after film curing, two-component zinc-rich ethyl silicate coatings have some limitations, one of which is inadequate shelf life as a result of in-can binder gelation. In this work, the preparation steps of ethyl silicate such as pre-hydrolysis, dehydration and organometallic reactions were surveyed and herein an approach towards understanding the cause and effect relationship of the use of ingredients is presented. The effects of water and catalytic acid dosages on gel time under accelerated conditions and the effect of alcoholic solvent order on the rate of the hydrolysis and dehydration reactions were studied via Karl-Fischer test determining the water content of hydrolysate. A thriving optimization in shelf life without any loss in physical–mechanical characteristics of the final film (e.g. hardness, adhesion, solvent and salt spray resistance) was obtained.
Durability study of CFRP strengthened steel circular hollow section members under marine environment
Resumo:
Galvanic corrosion is a common phenomenon in Carbon Fibre Reinforced Polymer (CFRP) strengthened steel structures in wet environments and submerged conditions, which reduces durability by weakening the bond between the CFRP and steel substrate. CFRP materials have already been proven to have superior resistance to corrosion and chemical attacks but the adhesive and steel are generally affected by long-term exposure to moisture, especially in conjunction with salts resulting from deicing of ocean spray. This paper presents the results of a research program to improve the durability of CFRP strengthened steel circular hollow section (CHS) members by treating the steel surface with an epoxy based adhesion promoter and inserting Glass Fibre Reinforced Polymer (GFRP) as a galvanic corrosion barrier against simulated sea water. It also presents the effects of accelerated corrosion on the bond of CFRP strengthened hollow steel members. The program consisted of four CFRP strengthened steel beams and one unstrengthened steel beam. Two strengthened beams were used as control while the other two beams were exposed to a highly corrosive environment to induce accelerated corrosion. The corrosion rate was considered 10% which represents a moderate level of loss in the cross-sectional area of the steel tube throughout its intended service life. The beams were then loaded to failure under four-point bending. The research findings indicate that the accelerated corrosion adversely affected the ultimate strength of the conditioned beams and the embedded glass fibre enhanced the bond durability.
Resumo:
A curvilinear thin film model is used to simulate the motion of droplets on a virtual leaf surface, with a view to better understand the retention of agricultural sprays on plants. The governing model, adapted from Roy et al. (2002 J. Fluid Mech. 454, 235–261) with the addition of a disjoining pressure term, describes the gravity- and curvature driven flow of a small droplet on a complex substrate: a cotton leaf reconstructed from digitized scan data. Coalescence is the key mechanism behind spray coating of foliage, and our simulations demonstrate that various experimentally observed coalescence behaviours can be reproduced qualitatively. By varying the contact angle over the domain, we also demonstrate that the presence of a chemical defect can act as an obstacle to the droplet’s path, causing break-up. In simulations on the virtual leaf, it is found that the movement of a typical spray size droplet is driven almost exclusively by substrate curvature gradients. It is not until droplet mass is sufficiently increased via coalescence that gravity becomes the dominating force.