947 resultados para spine biomechanics
Resumo:
The majority of randomized clinical trials (RCTs) of spinal manipulative therapy have not adequately de?ned the terms ‘mobilization’ and ‘manipulation’, nor distinguished between these terms in reporting the trial interventions. The purpose of this study was to describe the spinal manipulative therapy techniques utilized within a RCT of manipulative therapy (MT; n=80), interferential therapy (IFT; n=80), and a combination of both (CT; n=80) for people with acute low back pain (LBP). Spinal manipulative therapy was de?ned as any ‘mobilization’ (low velocity manual force without a thrust) or ‘manipulation’ (high velocity
thrust) techniques of the spine described by Maitland and Cyriax.
The 16 physiotherapists, all members of the Society of Orthopaedic Medicine, utilized three spinal manipulative therapy patterns in the RCT: Maitland Mobilization (40.4%, n=59), Maitland Mobilization/Cyriax Manipulation (40.4%, n=59) and Cyriax Manipulation (19.1%, n=28). There was a signi?cant difference between the MT and CT groups in their usage of spinal manipulative therapy techniques (w2=9.178; df=2;P=0.01); subjects randomized to the CT group received three times more Cyriax Manipulation (29.2%, n=21/72) than those randomized to the MT group (9.5%, n=7/74; df=1; P=0.003).
The use of mobilization techniques within the trial was comparable with their usage by the general population of physiotherapists in Britain and Ireland for LBP management. However, the usage of manipulation techniques was considerably higher than reported in physiotherapy surveys and may re?ect the postgraduate training of trial therapists.
Wear paths produced by individual hip-replacement patients— A large-scale, long-term follow-up study
Resumo:
Wear particle accumulation is one of the main contributors to osteolysis and implant failure in hip replacements. Altered kinematics produce significant differences in wear rates of hip replacements in simulator studies due to varying degrees of multidirectional motion. Gait analysis data from 153 hip-replacement patients 10-years post-operation were used to model two- and three-dimensional wear paths for each patient. Wear paths were quantified in two dimensions using aspect ratios and in three dimensions using the surface areas of the wear paths, with wear-path surface area correlating poorly with aspect ratio. The average aspect ratio of the patients wear paths was 3.97 (standard deviation ¼ 1.38), ranging from 2.13 to 10.86. Sixty percent of patients displayed aspect ratios between 2.50 and 3.99. However, 13% of patients displayed wear paths with aspect ratios 45.5, which indicates reduced multidirectional motion. The majority of total hip replacement (THR) patients display gait kinematics which produce multidirectional wear paths, but a significant minority display more linear paths.
Resumo:
One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy: cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and preload cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature, in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058)). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers. (C) 2002 Elsevier Science Ltd. All rights reserved.