952 resultados para spectrum of transition operator
Resumo:
The Raman spectrum of lithium hydrazinium sulphate has been recorded both in the single crystal form and in aqueous solutions. The crystal exhibits thirty-eight Raman lines having the frequency shifts 52, 70, 104, 146, 174, 220, 260, 302, 350, 454, 470, 610, 630, 715, 977, 1094, 1115, 1132, 1177, 1191, 1260, 1444, 1493, 1577, 1630, 1670, 2205, 2484, 2553, 2655, 2734, 2848, 2894, 2939, 3028, 3132, 3290 and 3330 cm.−1 The aqueous solution gave rise to six Raman lines at 452, 980, 1050–1200, 1260, 1425 and 1570 cm.−1 apart from a maximum at 180 cm.−1 in the ‘wing’ accompanying the Rayleigh line. The observed Raman lines have been assigned as arising from the vibrations of the SO4 ion, N2H5+ ion, Li-O4 group, hydrogen bond and the lattice. The influence of the hydrogen bond on the N-H stretching vibrations has been pointed out. The various features of the observed spectrum strongly support the hypothesis that the NH3 group in the crystal is rotating around the N-N axis at room temperature.
Resumo:
Previously, it was reported from this laboratory that the heme groups of hemoglobin are “buried” within globin at pH 4.0 and not dissociated, on the basis of the obiligatory requirement of urea for the reaction of N-bromosuccinimide with the heme groups of hemoglobin at pH4.0, and also on the basis of the “normalization” of the spectrum of hemoglobin at this pH in the presence of urea or sucrose. In the present study, it has been shown that the behaviour of sperm whale myoglobin with respect to its reaction with N-bromosuccinimide and with respect to spectral “normalization” in urea or sucrose are essentially similar to that of hemoglobin. It has also been demonstrated that the spectral “normalization” obtained with crystalline hemin is not identical with that obtained with either hemoglobin or myoglobin. The bearing of the results of the present study on the earlier work on hemoglobin is indicated.
Resumo:
This paper presents a unified exact analysis for the statics and dynamics of a class of thick laminates. A three-dimensional, linear, small deformation theory of elasticity solution is developed for the bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. All the nine elastic constants of orthotropy are taken into account. The solution is formally exact and leads to simple infinite series for stresses and displacements in flexure, forced vibration and "beam-column" type problems and to closed form characteristic equations for free vibration and buckling problems. For free vibration of plates, the present analysis yields a triply infinite spectrum of frequencies instead of only one doubly infinite spectrum by thin plate theory or three doubly infinite spectra by Reissner-Mindlin type analyses. Some numerical results are presented for plates and laminates. Comparison of results from thin plate, Reissner and Mindlin analyses with these yield some important conclusions regarding the validity and effects of the assumptions made in the approximate theories.
Resumo:
Raman spectra of single crystals of adipic and sebacic acids have been photographed for the first time using λ 2537 excitation. The spectra have been divided into four regions: (a) internal frequencies; (b) summations and overtones; (c) external vibrations; and (d) low-frequency hydrogen bond oscillations. Tentative correlations have been given for all the internal frequencies and summations and overtones. A series of diffuse weak bands observed in the spectra of both these acids in the not, vert, similar2400–2800 cm−1 have been explained as a superposition of O---H frequencies lowered due to hydrogen bond formation over the summations and overtones of fundamentals mainly in the not, vert, similar1000–1500 cm−1 region. Rotatory type of external oscillations of the two formula units of these molecules in their unit cells have been identified at 76, 99, 118 and 165 cm−1 in adipic acid and 66, 95, 117 and 177 cm−1 in the spectrum of sebacic acid. A brief discussion of the low frequency hydrogen bond vibrations in these acids has been made. Making use of the Lippincott—Schroeder potential and assuming a highly anharmonic potential curve for the hydrogen bond, the vibrational frequencies of the bond have been theoretically evaluated. There is very good agreement between these and the experimental values. The results for adipic acid in cm−1 are: 304 (0 → 1), 270 (1 → 2), 241 (2 → 3), 222 (3 → 4) 201 (4 → 5), 183 (5 → 6). In the case of sebacic acid some of the intermediate and higher transitions are absent in the spectrum recorded by the author. From the above data for adipic acid the dissociation energy of the hydrogen bond was evaluated as 5·9 kcal/mole in fair agreement with the values derived from conventional methods.
Resumo:
A reaction of N-bromosuccinimide with the heme groups of hemoglobin has been studied spectrophotometrically. The reaction brings about the disappearance of characteristic absorption peaks of hemoglobin and is accompanied by the release of inorganic iron from the heme groups. Urea is obligatory for the reaction to take place at pH 4.0, while it can occur in the absence of urea at pH 7.0. The spectrum of hemoglobin which does not show any peak in the Soret region at pH 4.0 is “normalized” in the presence of urea or sucrose at the same pH. The effect of “normalization” in 8 M urea is apparent over the pH range 3.0–4.5. From the obligatory requirement of urea and sucrose for “normalization” of spectrum and the dependence of the release of inorganic iron on the concentration of urea, it is suggested that heme groups are “buried” within the globin at pH 4.0 and not dissociated from globin as supposed before.
Resumo:
A three-dimensional linear, small deformation theory of elasticity solution by the direct method is developed for the free vibration of simply-supported, homogeneous, isotropic, thick rectangular plates. The solution is exact and involves determining a triply infinite sequence of eigenvalues from a doubly infinite set of closed form transcendental equations. As no restrictions are placed on the thickness variation of stresses or displacements, this formulation yields a triply infinite spectrum of frequencies, instead of only one doubly infinite spectrum by thin plate theory and three doubly infinite spectra by Mindlin's thick plate theory. Further, the present analysis yields symmetric thickness modes which neither of the approximate theories can identify. Some numerical results from the two approximate theories are compared with those from the present solution and some important conclusions regarding the effect of the assumptions made in the approximate theories are drawn. The thickness variations of stresses and displacements are also discussed. The analysis is readily extended for laminated plates of isotropic materials. Numerical results are also given for three-ply laminates, and are used to assess the accuracy of thin plate theory predictions for laminates. Extension to general lateral surface conditions and forced vibrations is indicated.
Resumo:
The line spectral frequency (LSF) of a causal finite length sequence is a frequency at which the spectrum of the sequence annihilates or the magnitude spectrum has a spectral null. A causal finite-length sequencewith (L + 1) samples having exactly L-LSFs, is referred as an Annihilating (AH) sequence. Using some spectral properties of finite-length sequences, and some model parameters, we develop spectral decomposition structures, which are used to translate any finite-length sequence to an equivalent set of AH-sequences defined by LSFs and some complex constants. This alternate representation format of any finite-length sequence is referred as its LSF-Model. For a finite-length sequence, one can obtain multiple LSF-Models by varying the model parameters. The LSF-Model, in time domain can be used to synthesize any arbitrary causal finite-length sequence in terms of its characteristic AH-sequences. In the frequency domain, the LSF-Model can be used to obtain the spectral samples of the sequence as a linear combination of spectra of its characteristic AH-sequences. We also summarize the utility of the LSF-Model in practical discrete signal processing systems.
Resumo:
A detailed study of nickel-monoethanolamine complexes has been made employing potentiometric and spectrophotometric methods. The conditions for the formation of mono as well as polynuclear complexes have been investigated by potentiometric method. Evidence is presented for the formation of the following complexes and their stability constants are determined: NiA2+, Ni22+, Ni32+, NiA42+, NiA52+, NiA22+, Ni2A24+ and Ni3A36+. Combining potentiometric data with the spectrophotometric data, absorption spectra of the pure mononuclear complexes NiA2+ to NiA42+ and NiA2+6 have been computed. The absorption spectrum of NiA2+6 has been discussed on the basis of ligand field and molecular orbital theories. The absorption spectra of intermediate complexes have been interpreted on the basis of average ligand field theory. There has been good agreement between the experimental (10,400 cm-1) value of 10 Dq of NiA2+6 and the calculated value of 10 Dq (11,400 cm-1) on the basis of M.O. theory.
Resumo:
Raman spectra of single crystals of (NH4)2M(SO4)2·6 H2O where M=Mg, Zn Ni or Co have been recorded using λ 2537 excitation. Interesting results concerning the substitution of the divalent atoms in the double sulphate lattice on the sulphate and ammonium frequencies are observed. The spectra of these double sulphates are discussed in the light of the known crystal structure details and in relation, to the spectra of the corresponding potassium double sulphates, reported recently by the author. The Raman spectrum of NaNH4SO4·2 H2O has also been recorded for the first time and the results obtained are also included.
Resumo:
Polarisation characters of the Raman lines of calcium fluoride (fluorspar) and potassium aluminium sulphate (alum) were investigated under the following conditions. Unpolarised light was incident normally on a face of the crystal making an angle 22.5° with a cubic face and the light scattered transversely along a cubic axis was analysed by a double image prism kept with its principal axes inclined at 45° to the vertical. Under these conditions the depolarisation factors of the Raman lines belonging to the totally symmetric (A), the doubly degenerate (E) and the triply degenerate (F) modes should be respectively =1, >1 and <1. The characteristic Raman line of CaF2 at 322 cm-1 exhibited a depolarisation value less than 1, showing thereby that the corresponding mode is a triply degenerate one (F). The Raman lines observed in the spectrum of K-alum were also classified and the results were compared with those given by previous investigators using standard crystal orientations.
Resumo:
The Raman spectra of methyl alcohol, ethyl alcohol, n-propyl alcohol and n-butyl alcohol have been recorded using λ 2537 excitation. 35, 49, 45 and 51 Raman lines respectively have been identified in the spectra of these alcohols, in addition to the rotational 'wings'. In each case, a large number of additional lines have been recorded. The existence of Raman lines with frequency shifts greater than 3800 cm.-1, first reported by Bolla in the spectrum of ethyl alcohol, has been confirmed. Similar high-frequency shift Raman lines have also been recorded in the spectrum of methyl alcohol. They have been assigned as combinations. Proper assignments have been given for the prominent Raman lines appearing in the spectra of these alcohols.
Resumo:
Raman spectra of single crystals of diglycine hydrochloride, diglycine hydrobromide and diglycine nitrate have been recorded for the first time. λ 2536·5 resonance radiation of mercury has been used as exciter. The spectrum of diglycine hydrochloride exhibits 10 low frequency lines and 41 lines due to internal oscillations, while that of diglycine hydrobromide exhibits 11 lines and 41 lines respectively. In the case of diglycine nitrate 46 lines have been recorded, of which 10 belong to the lattice spectrum. These spectra are compared with the Raman spectra of triglycine sulphate and α-glycine and proper assignments have been given to the internal oscillations.
Resumo:
Benzothiazoles are multitarget agents with broad spectrum of biological activity. Among the antitumor agents discovered in recent years, the identification of various 2-(4-aminophenyl) benzothiazoles as potent and selective antitumor drugs against different cancer cell lines has stimulated remarkable interest. Some of the benzothiazoles are known to induce cell cycle arrest, activation of caspases and interaction with DNA molecule. Based on these interesting properties of benzothiazoles and to obtain new biologically active agents, a series of novel 4,5,6,7-tetrahydrobenzo[d]thiazole derivatives 5(a-i) were synthesized and evaluated for their efficacy as antileukemic agents in human leukemia cells (K562 and Reh). The chemical structures of the synthesized compounds were confirmed by H-1 NMR, LCMS and IR analysis. The cytotoxicity of these compounds were determined using trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Results showed that, these compounds mediate a significant cytotoxic response to cancer cell lines tested. We found that the compounds having electron withdrawing groups at different positions of the phenyl ring of the thiourea moiety displayed significant cytotoxic effect with IC50 value less than 60 mu M. To rationalize the role of electron withdrawing group in the induction of cytotoxicity, we have chosen molecule 5g (IC50 similar to 15 mu M) which is having chloro substitution at ortho and para positions. Flow cytometric analysis of annexin V-FITC/ propidium iodide (PI) double staining and DNA fragmentation suggest that 5g can induce apoptosis.
Resumo:
Switching frequency variation over a fundamental period is a major problem associated with hysteresis controller based VSI fed IM drives. This paper describes a novel concept of generating parabolic trajectories for current error space phasor for controlling the switching frequency variation in the hysteresis controller based two-level inverter fed IM drives. A generalized algorithm is developed to determine unique set of parabolic trajectories for different speeds of operation for any given IM load. Proposed hysteresis controller provides the switching frequency spectrum of inverter output voltage, similar to that of the constant switching frequency VC-SVPWM based IM drive. The scheme is extensively simulated and experimentally verified on a 3.7 kW IM drive for steady state and transient performance.
Resumo:
The effect of viscosity stratification on the different mechanism of transition to turbulence is not well understood. In this paper, a viscosity variation normal to the flow in a channel is investigated. The primary and secondary instability are computed, and the transient growth is analysed. It is found that viscosity stratification can have different effects in each case.