914 resultados para spatial and temporal patterns


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest decline played a pivotal role in motivating Europe's political focus on sustainability around 35 years ago. Silver fir (Abies alba) exhibited a particularly severe dieback in the mid-1970s, but disentangling biotic from abiotic drivers remained challenging because both spatial and temporal data were lacking. Here, we analyze 14 136 samples from living trees and historical timbers, together with 356 pollen records, to evaluate recent fir growth from a continent-wide and Holocene-long perspective. Land use and climate change influenced forest growth over the past millennium, whereas anthropogenic emissions of acidic sulfates and nitrates became important after about 1850. Pollution control since the 1980s, together with a warmer but not drier climate, has facilitated an unprecedented surge in productivity across Central European fir stands. Restricted fir distribution prior to the Mesolithic and again in the Modern Era, separated by a peak in abundance during the Bronze Age, is indicative of the long-term interplay of changing temperatures, shifts in the hydrological cycle, and human impacts that have shaped forest structure and productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last two decades, imaging of the aorta has undergone a clinically relevant change. As part of the change non-invasive imaging techniques have replaced invasive intra-arterial digital subtraction angiography as the former imaging gold standard for aortic diseases. Computed tomography (CT) and magnetic resonance imaging (MRI) constitute the backbone of pre- and postoperative aortic imaging because they allow for imaging of the entire aorta and its branches. The first part of this review article describes the imaging principles of CT and MRI with regard to aortic disease, shows how both technologies can be applied in every day clinical practice, offering exciting perspectives. Recent CT scanner generations deliver excellent image quality with a high spatial and temporal resolution. Technical developments have resulted in CT scan performed within a few seconds for the entire aorta. Therefore, CT angiography (CTA) is the imaging technology of choice for evaluating acute aortic syndromes, for diagnosis of most aortic pathologies, preoperative planning and postoperative follow-up after endovascular aortic repair. However, radiation dose and the risk of contrast induced nephropathy are major downsides of CTA. Optimisation of scan protocols and contrast media administration can help to reduce the required radiation dose and contrast media. MR angiography (MRA) is an excellent alternative to CTA for both diagnosis of aortic pathologies and postoperative follow-up. The lack of radiation is particularly beneficial for younger patients. A potential side effect of gadolinium contrast agents is nephrogenic systemic fibrosis (NSF). In patients with high risk of NSF unenhanced MRA can be performed with both ECG- and breath-gating techniques. Additionally, MRI provides the possibility to visualise and measure both dynamic and flow information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable water isotope (delta(18)O, deltaD) data from a high elevation (5100 masl) ice core recovered from the Tien Shan Mountains, Kyrgyzstan, display a seasonal cycle in deuterium excess (d = deltaD - 8* delta(18)O) related to changes in the regional hydrologic cycle during 1994 - 2000. While there is a strong correlation (r(2) = 0.98) between delta(18)O and dD in the ice core samples, the regression slope (6.9) and mean d value (23.0) are significantly different than the global meteoric water line values. The resulting time-series ice core d profile contains distinct winter maxima and summer minima, with a yearly d amplitude of similar to 15 - 20parts per thousand. Local-scale processes that may affect d values preserved in the ice core are not consistent with the observed seasonal variability. Data from Central Asian monitoring sites in the Global Network of Isotopes in Precipitation (GNIP) have similar seasonal d changes. We suggest that regional-scale hydrological conditions, including seasonal changes in moisture source, transport, and recycling in the Caspian/ Aral Sea region, are responsible for the observed spatial and temporal d variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemistry data from 16, 50-115 m deep, sub-annually dated ice cores are used to investigate spatial and temporal concentration variability of sea-salt (ss) SO42- and excess (xs) SO42- over West Antarctica and the South Pole for the last 200 years. Low-elevation ice-core sites in western West Antarctica contain higher concentrations Of SO42- as a result of cyclogenesis over the Ross Ice Shelf and proximity to the Ross Sea Polynya. Linear correlation analysis of 15 West Antarctic ice-core SO42- time series demonstrates that at several sites concentrations Of ssSO(4)(2-) are higher when sea-ice (SIE) extent is greater, and the inverse for XSS04. Concentrations Of XSS04 from the South Pole site (East Antarctica) are associated with SIE from the Weddell region, and West Antarctic XSSO42- concentrations are associated with SIE from the Bellingshausen-Amundsen-Ross region. The only notable rise of the last 200 years in xsSO(4)(2-), around 1940, is not related to SIE fluctuations and is most likely a result of increased xsSO(4)(2-) production in the mid-low latitudes and/or an increase in transport efficiency from the mid-low latitudes to central West Antarctica. These high-resolution records show that the source types and source areas Of ssSO(4)(2-) and xsSO(4)(2-) delivered to eastern and western West Antarctica and the South Pole differ from site to site but can best be resolved using records from spatial ice-core arrays such as the International Trans-Antarctic Scientific Expedition (ITASE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex effects of light, nutrients and temperature lead to a variable carbon to chlorophyll (C:Chl) ratio in phytoplankton cells. Using field data collected in the Equatorial Pacific, we derived a new dynamic model with a non-steady C:Chl ratio as a function of irradiance, nitrate, iron, and temperature. The dynamic model is implemented into a basin-scale ocean circulation-biogeochemistry model and tested in the Equatorial Pacific Ocean. The model reproduces well the general features of phytoplankton dynamics in this region. For instance, the simulated deep chlorophyll maximum (DCM) is much deeper in the western warm pool (similar to 100 m) than in the Eastern Equatorial Pacific (similar to 50 m). The model also shows the ability to reproduce chlorophyll, including not only the zonal, meridional and vertical variations, but also the interannual variability. This modeling study demonstrates that combination of nitrate and iron regulates the spatial and temporal variations in the phytoplankton C:Chl ratio in the Equatorial Pacific. Sensitivity simulations suggest that nitrate is mainly responsible for the high C:Chl ratio in the western warm pool while iron is responsible for the frontal features in the C:Chl ratio between the warm pool and the upwelling region. In addition, iron plays a dominant role in regulating the spatial and temporal variations of the C:Chl ratio in the Central and Eastern Equatorial Pacific. While temperature has a relatively small effect on the C:Chl ratio, light is primarily responsible for the vertical decrease of phytoplankton C:Chl ratio in the euphotic zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tenascins are extracellular matrix proteins with distinct spatial and temporal expression during development, tissue homeostasis and disease. Based on their expression patterns and knockout phenotypes an important role of tenascins in tissue formation, cell adhesion modulation, regulation of proliferation and differentiation has been demonstrated. All of these features are of importance in stem cell niches where a precise regulation of growth versus differentiation has to be guaranteed. In this review we summarize the expression and possible functions of tenascins in neural, epithelial and osteogenic stem cell niches during normal development and organ turnover, in the hematopoietic and pro-inflammatory niche as well as in the metastatic niche during cancer progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seed production, seed dispersal, and seedling recruitment are integral to forest dynamics, especially in masting species. Often these are studied separately, yet scarcely ever for species with ballistic dispersal even though this mode of dispersal is common in legume trees of tropical African rain forests. Here, we studied two dominant main-canopy tree species, Microberlinia bisulcata and Tetraberlinia bifoliolata (Caesalpinioideae), in 25 ha of primary rain forest at Korup, Cameroon, during two successive masting events (2007/2010). In the vicinity of c. 100 and 130 trees of each species, 476/580 traps caught dispersed seeds and beneath their crowns c. 57,000 pod valves per species were inspected to estimate tree-level fecundity. Seed production of trees increased non-linearly and asymptotically with increasing stem diameters. It was unequal within the two species’ populations, and differed strongly between years to foster both spatial and temporal patchiness in seed rain. The M. bisulcata trees could begin seeding at 42–44 cm diameter: at a much larger size than could T. bifoliolata (25 cm). Nevertheless, per capita life-time reproductive capacity was c. five times greater in M. bisulcata than T. bifoliolata owing to former’s larger adult stature, lower mortality rate (despite a shorter life-time) and smaller seed mass. The two species displayed strong differences in their dispersal capabilities. Inverse modelling (IM) revealed that dispersal of M. bisulcata was best described by a lognormal kernel. Most seeds landed at 10–15 m from stems, with 1% of them going beyond 80 m (<100 m). The direct estimates of fecundity significantly improved the models fitted. The lognormal also described well the seedling recruitment distribution of this species in 121 ground plots. By contrast, the lower intensity of masting and more limited dispersal of the heavier-seeded T. bifoliolata prevented reliable IM. For this species, seed density as function of distance to traps suggested a maximum dispersal distance of 40–50 m, and a correspondingly more aggregated seedling recruitment pattern ensued than for M. bisulcata. From this integrated field study, we conclude that the reproductive traits of M. bisulcata give it a considerable advantage over T. bifoliolata by better dispersing more seeds per capita to reach more suitable establishment sites, and combined with other key traits they explain its local dominance in the forest. Understanding the linkages between size at onset of maturity, individual fecundity, and dispersal capability can better inform the life-history strategies, and hence management, of co-occurring tree species in tropical forests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, many studies about a network active during rest and deactivated during tasks emerged in the literature: the default mode network (DMN). Spatial and temporal DMN features are important markers for psychiatric diseases. Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects. From these findings, the conclusion can be drawn that an increase in resting state DMN activity may go along with an increase in theta power in high-load WM conditions. We followed this hypothesis in a study on 17 healthy subjects performing a visual Sternberg WM task. The DMN was obtained by a BOLD-ICA approach and its dynamics represented by the percent-strength during pre-stimulus periods. DMN dynamics were temporally correlated with EEG theta spectral power from retention intervals. This so-called covariance mapping yielded the spatial distribution of the theta EEG fluctuations associated with the dynamics of the DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention. However, load-dependent correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance during later retention. Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over the course of the retention period. Since both, WM performance and DMN activity, are markers of mental health, our results could be important for further investigations of psychiatric populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a method for rapid identification and precise quantification of slope deformation using a portable radar interferometer. A rockslide with creep-like behavior was identified in the rugged and inaccessible headwaters of the Illgraben debris-flow catchment, located in the Central Swiss Alps. The estimated volume of the moving rock mass was approximately 0.5 x 10(6) m(3) with a maximum daily (3-D) displacement rate of 3 mm. Fast scene acquisition in the order of 6 s/scene led to uniquely precise mapping of spatial and temporal variability of atmospheric phase delay. Observations led to a simple qualitative model for prediction of atmospheric disturbances using a simple model for solar radiation, which can be used for advanced campaign planning for short observation periods (hours to days).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial arrangement of leaves and flowers around the stem, known as phyllotaxis, is controlled by an auxin-dependent reiterative mechanism that leads to regular spacing of the organs and thereby to remarkably precise phyllotactic patterns. The mechanism is based on the active cellular transport of the phytohormone auxin by cellular influx and efflux carriers, such as AUX1 and PIN1. Their important role in phyllotaxis is evident from mutant phenotypes, but their exact roles in space and time are difficult to address due to the strong pleiotropic phenotypes of most mutants in phyllotaxis. Models of phyllotaxis invoke the accumulation of auxin at leaf initials and removal of auxin through their developing vascular strand, the midvein. We have developed a precise microsurgical tool to ablate the midvein at high spatial and temporal resolution in order to test its function in leaf formation and phyllotaxis. Using amplified femtosecond laser pulses, we ablated the internal tissues in young leaf primordia of tomato (Solanum lycopersicum) without damaging the overlying L1 and L2 layers. Our results show that ablation of the future midvein leads to a transient accumulation of auxin in the primordia and to an increase in their width. Phyllotaxis was transiently affected after midvein ablations, but readjusted after two plastochrons. These results indicate that the developing midvein is involved in the basipetal transport of auxin through young primordia, which contributes to phyllotactic spacing and stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Native trees and shrubs are essential components of rural landscapes in the semi-arid inner-Andean valleys of Bolivia. They can be found as hedges and bushes in various agroecosystems such as terrace walls, slopes, field boundaries and fallow land. Their distribution and floristic composition are the result of dynamic spatial and temporal interactions between local farmers and the environment. Local uses of natural resources and biodiversity reflect the constantly evolving Andean culture, which can be generally characterised as an intertwining of the human, natural, and spiritual worlds. The aim of the present ethnobotanical study was to analyse the dynamics of traditional ecological knowledge, to ascertain local farmers’ perceptions and uses of native woody species in Andean communities and to associate the results with local conservation activities for the trees and shrubs concerned. Our case study was carried out within two communities of the Tunari National Park (Dept. Cochabamba) in Bolivia. For data collection, research methods from social science (semi-structured interviews, participative observation, participatory mapping) as well as vegetation surveys were combined. Local actors included women and men of all ages as well as families from different social categories and altitudinal levels of permanent residence. Our study indicates that, due to a multitude of socio-economic pressures (e.g. migration of young people) as well as changes in use of biodiversity (e.g. replacement of native by exotic introduced species), the traditional ecological knowledge base of native trees and shrubs and their respective uses has become diminished over time. In many cases it has led to a decline in people’s awareness of native species and as a consequence their practical, emotional and spiritual relationships with them have been lost. However, results also show that applied traditional ecological knowledge has led to local conservation strategies, which have succeeded in protecting those tree and shrub species which are most widely regarded for their multifunctional, constant and exclusive uses (e.g. Schinus molle, Prosopis laevigata, Baccharis dracunculifolia). The presentation will discuss the question if and how applied traditional ecological knowledge positively contributes to local initiatives of sustainable use and conservation of biodiversity in rural areas.