893 resultados para sparse URAs
Resumo:
This research is motivated by a practical application observed at a printed circuit board (PCB) manufacturing facility. After assembly, the PCBs (or jobs) are tested in environmental stress screening (ESS) chambers (or batch processing machines) to detect early failures. Several PCBs can be simultaneously tested as long as the total size of all the PCBs in the batch does not violate the chamber capacity. PCBs from different production lines arrive dynamically to a queue in front of a set of identical ESS chambers, where they are grouped into batches for testing. Each line delivers PCBs that vary in size and require different testing (or processing) times. Once a batch is formed, its processing time is the longest processing time among the PCBs in the batch, and its ready time is given by the PCB arriving last to the batch. ESS chambers are expensive and a bottleneck. Consequently, its makespan has to be minimized. ^ A mixed-integer formulation is proposed for the problem under study and compared to a formulation recently published. The proposed formulation is better in terms of the number of decision variables, linear constraints and run time. A procedure to compute the lower bound is proposed. For sparse problems (i.e. when job ready times are dispersed widely), the lower bounds are close to optimum. ^ The problem under study is NP-hard. Consequently, five heuristics, two metaheuristics (i.e. simulated annealing (SA) and greedy randomized adaptive search procedure (GRASP)), and a decomposition approach (i.e. column generation) are proposed—especially to solve problem instances which require prohibitively long run times when a commercial solver is used. Extensive experimental study was conducted to evaluate the different solution approaches based on the solution quality and run time. ^ The decomposition approach improved the lower bounds (or linear relaxation solution) of the mixed-integer formulation. At least one of the proposed heuristic outperforms the Modified Delay heuristic from the literature. For sparse problems, almost all the heuristics report a solution close to optimum. GRASP outperforms SA at a higher computational cost. The proposed approaches are viable to implement as the run time is very short. ^
Resumo:
The construction of artificial reefs in the oligotrophic seagrass meadows of central Florida Bay attracted large aggregations of fish and invertebrates, and assays of nutrient availability indicated increases in availability of nutrients to sediment microalgae, periphyton, and seagrasses around reefs. An average of 37.8 large (> 10 cm) mobile animals were observed on each small artificial reef. The dominant fish species present was the gray snapper (Lutjanus griseus Linnaeus, 1758). Four yrs after the establishment of the artificial reefs, microphytobenthos abundance was twice as high in reef plots (1.7 ± 0.1 μg chl-a cm-2) compared to control plots (0.9 ± 0.1 μg chl-a cm-2). The accumulation of periphyton on glass periphytometers was four times higher in artificial reef plots (200.1 ± 45.8 mg chl-a m-2) compared to control plots (54.8 ± 6.8 mg chl-a m-2). The seagrass beds surrounding the artificial reefs changed rapidly, from a sparse Thalassia testudinum (Banks & Soland. ex König) dominated community, which persisted at control plots, to a community dominated by Halodule wrightii (Ascherson). Such changes mirror the changes induced in experimentally fertilized seagrass beds in Florida, strongly suggesting that the aggregations of animals attracted by artificial reefs concentrated nutrients in this oligotrophic seascape, favoring the growth of fast-growing primary producers like microphytobenthos and periphyton, and changing the competitively dominant seagrass from slow-growing T. testudinum to faster-growing H. wrightii in the vicinity of the reefs.
Resumo:
The hydrologic regime of Shark Slough, the most extensive long hydroperiod marsh in Everglades National Park, is largely controlled by the location, volume, and timing of water delivered to it through several control structures from Water Conservation Areas north of the Park. Where natural or anthropogenic barriers to water flow are present, water management practices in this highly regulated system may result in an uneven distribution of water in the marsh, which may impact regional vegetation patterns. In this paper, we use data from 569 sampling locations along five cross-Slough transects to examine regional vegetation distribution, and to test and describe the association of marsh vegetation with several hydrologic and edaphic parameters. Analysis of vegetation:environment relationships yielded estimates of both mean and variance in soil depth, as well as annual hydroperiod, mean water depth, and 30-day maximum water depth within each cover type during the 1990’s. We found that rank abundances of the three major marsh cover types (Tall Sawgrass, Sparse Sawgrass, and Spikerush Marsh) were identical in all portions of Shark Slough, but regional trends in the relative abundance of individual communities were present. Analysis also indicated clear and consistent differences in the hydrologic regime of three marsh cover types, with hydroperiod and water depths increasing in the order Tall Sawgrass , Sparse Sawgrass , Spikerush Marsh. In contrast, soil depth decreased in the same order. Locally, these differences were quite subtle; within a management unit of Shark Slough, mean annual values for the two water depth parameters varied less than 15 cm among types, and hydroperiods varied by 65 days or less. More significantly, regional variation in hydrology equaled or exceeded the variation attributable to cover type within a small area. For instance, estimated hydroperiods for Tall Sawgrass in Northern Shark Slough were longer than for Spikerush Marsh in any of the other regions. Although some of this regional variation may reflect a natural gradient within the Slough, a large proportion is the result of compartmentalization due to current water management practices within the marsh.We conclude that hydroperiod or water depth are the most important influences on vegetation within management units, and attribute larger scale differences in vegetation pattern to the interactions among soil development, hydrology and fire regime in this pivotal portion of Everglades.
Resumo:
Increasing atmospheric CO2 concentrations associated with climate change will likely influence a wide variety of ecosystems. Terrestrial research has examined the effects of increasing CO2 concentrations on the functionality of plant systems; with studies ranging in scale from the short-term responses of individual leaves, to long-term ecological responses of complete forests. While terrestrial plants have received much attention, studies on the responses of marine plants (seagrasses) to increased CO 2(aq) concentrations remain relatively sparse, with most research limited to small-scale, ex situ experimentation. Furthermore, few studies have attempted to address similarities between terrestrial and seagrass responses to increases in CO2(aq). The goals of this dissertation are to expand the scope of marine climate change research, and examine how the tropical seagrass, Thalassia testudinum responds to increasing CO 2(aq)concentrations over multiple spatial and temporal scales. ^ Manipulative laboratory and field experimentation reveal that, similar to terrestrial plants, seagrasses strongly respond to increases in CO 2(aq) concentrations. Using a novel field technique, in situ field manipulations show that over short time scales, seagrasses respond to elevated CO2(aq) by increasing leaf photosynthetic rates and the production of soluble carbohydrates. Declines in leaf nutrient (nitrogen and phosphorus) content were additionally detected, paralleling responses from terrestrial systems. Over long time scales, seagrasses increase total above- and belowground biomass with elevated CO2(aq), suggesting that, similar to terrestrial research, pervasive increases in atmospheric and oceanic CO2(aq) concentrations stand to influence the productivity and functionality of these systems. Furthermore, field experiments reveal that seagrass epiphytes, which comprise an important component of seagrass ecosystems, additionally respond to increased CO2(aq) with strong declines in calcified taxa and increases in fleshy taxa. ^ Together, this work demonstrates that increasing CO2(aq) concentrations will alter the functionality of seagrass ecosystems by increasing plant productivity and shifting the composition of the epiphyte community. These results have implications for future rates of carbon storage and sediment production within these widely distributed systems.^
Resumo:
Globally, human populations are increasing and coastal ecosystems are becoming increasingly impacted by anthropogenic stressors. As eutrophication and exploitation of coastal resources increases, primary producer response to these drivers becomes a key indicator of ecosystem stability. Despite the importance of monitoring primary producers such as seagrasses and macroalgae, detailed studies on the response of these benthic habitat components to drivers remain relatively sparse. Utilizing a multi-faceted examination of turtle-seagrass and sea urchin-macroalgae consumer and nutrient dynamics, I elucidate the impact of these drivers in Akumal, Quintana Roo, Mexico. In Yal Ku Lagoon, macroalgae bioindicators signified high nutrient availability, which is important for further studies, but did not consistently follow published trends reflecting decreased δ 15N content with distance from suspected source. In Akumal Bay, eutrophication and grazing by turtles and fishes combine to structure patches within the seagrass beds. Grazed seagrass patches had higher structural complexity and productivity than patches continually grazed by turtles and fishes. Results from this study indicate that patch abandonment may follow giving-up density theory, the first to be recorded in the marine environment. As Diadema antillarum populations recover after their massive mortality thirty years ago, the role these echinoids will have in reducing macroalgae cover and altering ecosystem state remains to be clear. Although Diadema antillarum densities within the coral reef ecosystem were comparable to other regions within the Caribbean, the echinoid population in Akumal Bay was an insufficient driver to prevent dominance of a turf-algal-sediment (TAS) state. After a four year study, declining coral cover coupled with increased algal cover suggests that the TAS-dominated state is likely to persist over time despite echinoid recovery. Studies on macroalgal diversity and nutrients within this same region of echinoids indicated diversity and nutrient content of macroalgae increased, which may further increase the persistence of the algal-dominated state. This study provides valuable insight into the variable effects of herbivores and nutrients on primary producers within a tropical coastal ecosystem. Results from this work challenge many of the currently accepted theories on primary producer response to nutrients and herbivory while providing a framework for further studies into these dynamics.
Resumo:
Despite significant concern among policy, law enforcement and intelligence communities in the United States (U.S.) over the possible spread of radical Islamist thought throughout the world as part of a global jihad movement, there has been little investigation into the growing cyber networks in Latin America that promote strong anti-Semitic and anti-U.S. messages. This paper offers an overview of that network, focusing on the structure of Shi’ite websites that promote not only religious conversion but are also supportive of Iran -- a designated State-sponsor of terrorism – its nuclear program. Hezbollah, and the “Bolivarian revolution” led by Venezuelan President Hugo Chávez and his allies in Bolivia, Ecuador and Nicaragua. There is also a smaller group of Sunni Muslim websites, mostly tied to the legacy organizations of the Muslim Brotherhood. Many of the Shi’ite websites are linked to each other consistently portray Israel as a Nazi State, and the United States as an imperialist war monger. The Palestinian issue is frequently juxtaposed with the anti-imperialist struggle that those states supporting Chávez’ Bolivarian revolution claim to wage against the United States. Some of the Islamist websites claim thousands of new convert, but such claims are difficult to verify. Most of the websites visited touted the conversion of one or two individuals as significant victories and signs of progress, implying that there are few, if any, mass conversions. While conducting this research, no websites directly claiming to be linked to Hezbollah were found, although there numerous sites hosted by that group that were active until around 2006. Several of the inactive links are supportive of Hezbollah as a political party. No websites linked to al Qaeda were found. Yet a substantial Internet network remains operational. Much of the outreach for Shi’ite Muslims, closely tied to Iran, is sponsored on numerous websites across the region, including El Salvador, Chile, Ecuador, Colombia, Mexico and Bolivia. Numerous Facebook forums for discussion are also hosted around Latin America. These links must be viewed in the context of the rapidly expanding diplomatic, intelligence, political and economic ties of Iran in recent years with the self-proclaimed Bolivarian states. Given the sparse literature available and the rich vein of un-mined information on the sites cited as well as others that one could find with additional research, the cyber network of Islamist groups remains one of the least understood or studied facets of their presence in Latin America and the Caribbean. It merits significantly more investigation.
Resumo:
With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.
Resumo:
Background: Biologists often need to assess whether unfamiliar datasets warrant the time investment required for more detailed exploration. Basing such assessments on brief descriptions provided by data publishers is unwieldy for large datasets that contain insights dependent on specific scientific questions. Alternatively, using complex software systems for a preliminary analysis may be deemed as too time consuming in itself, especially for unfamiliar data types and formats. This may lead to wasted analysis time and discarding of potentially useful data. Results: We present an exploration of design opportunities that the Google Maps interface offers to biomedical data visualization. In particular, we focus on synergies between visualization techniques and Google Maps that facilitate the development of biological visualizations which have both low-overhead and sufficient expressivity to support the exploration of data at multiple scales. The methods we explore rely on displaying pre-rendered visualizations of biological data in browsers, with sparse yet powerful interactions, by using the Google Maps API. We structure our discussion around five visualizations: a gene co-regulation visualization, a heatmap viewer, a genome browser, a protein interaction network, and a planar visualization of white matter in the brain. Feedback from collaborative work with domain experts suggests that our Google Maps visualizations offer multiple, scale-dependent perspectives and can be particularly helpful for unfamiliar datasets due to their accessibility. We also find that users, particularly those less experienced with computer use, are attracted by the familiarity of the Google Maps API. Our five implementations introduce design elements that can benefit visualization developers. Conclusions: We describe a low-overhead approach that lets biologists access readily analyzed views of unfamiliar scientific datasets. We rely on pre-computed visualizations prepared by data experts, accompanied by sparse and intuitive interactions, and distributed via the familiar Google Maps framework. Our contributions are an evaluation demonstrating the validity and opportunities of this approach, a set of design guidelines benefiting those wanting to create such visualizations, and five concrete example visualizations.