961 resultados para solution of the substrate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

IntroductionThe effects of piperonyl butoxide (PBO) on the toxicity of the organophosphate temephos (TE) and the role of esterases in the resistance of Aedes aegypti to this insecticide were evaluated.MethodsA. aegypti L4 larvae susceptible and resistant to TE were pre-treated with PBO solutions in acetone at concentrations of 0.125, 0.25, 0.5, 1, and 2% for 24h and subsequently exposed to a diagnostic concentration of 0.02mg/L aqueous TE solution. The esterase activity of the larvae extracts pre-treated with varying PBO concentrations and exposed to TE for three time periods was determined.ResultsAt concentrations of 0.25, 0.5, 1, and 2%, PBO showed a significant synergistic effect with TE toxicity. High levels of esterase activity were associated with the survival of A. aegypti L4 larvae exposed to TE only.ConclusionsThe results of the biochemical assays suggest that PBO has a significant inhibitory effect on the total esterase activity in A. aegypti larvae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to address and resolve the wastewater contamination problem of the Sines refinery with the main objective of optimizing the quality of this stream and reducing the costs charged to the refinery, a dynamic mass balance was developed nd implemented for ammonia and polar oil and grease (O&G) contamination in the wastewater circuit. The inadequate routing of sour gas from the sour water stripping unit and the kerosene caustic washing unit, were identified respectively as the major source of ammonia and polar substances present in the industrial wastewater effluent. For the O&G content, a predictive model was developed for the kerosene caustic washing unit, following the Projection to Latent Structures (PLS) approach. Comparison between analytical data for ammonia and polar O&G concentrations in refinery wastewater originating from the Dissolved Air Flotation (DAF) effluent and the model predictions of the dynamic mass balance calculations are in a very good agreement and highlights the dominant impact of the identified streams for the wastewater contamination levels. The ammonia contamination problem was solved by rerouting the sour gas through an existing clogged line with ammonia salts due to a non-insulated line section, while for the O&G a dynamic mass balance was implemented as an online tool, which allows for prevision of possible contamination situations and taking the required preventive actions, and can also serve as a basis for establishing relationships between the O&G contamination in the refinery wastewater with the properties of the refined crude oils and the process operating conditions. The PLS model developed could be of great asset in both optimizing the existing and designing new refinery wastewater treatment units or reuse schemes. In order to find a possible treatment solution for the spent caustic problem, an on-site pilot plant experiments for NaOH recovery from the refinery kerosene caustic washing unit effluent using an alkaline-resistant nanofiltration (NF) polymeric membrane were performed in order to evaluate its applicability for treating these highly alkaline and contaminated streams. For a constant operating pressure and temperature and adequate operating conditions, 99.9% of oil and grease rejection and 97.7% of chemical oxygen demand (COD) rejection were observed. No noticeable membrane fouling or flux decrease were registered until a volume concentration factor of 3. These results allow for NF permeate reuse instead of fresh caustic and for significant reduction of the wastewater contamination, which can result in savings of 1.5 M€ per year at the current prices for the largest Portuguese oil refinery. The capital investments needed for implementation of the required NF membrane system are less than 10% of those associated with the traditional wet air oxidation solution of the spent caustic problem. The operating costs are very similar, but can be less than half if reusing the NF concentrate in refinery pH control applications. The payback period was estimated to be 1.1 years. Overall, the pilot plant experimental results obtained and the process economic evaluation data indicate a very competitive solution through the proposed NF treatment process, which represents a highly promising alternative to conventional and existing spent caustic treatment units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historically, the dorsal arterial system of the hand received less attention than the palmar system. The studies concerning dorsal arterial anatomy present some controversies regarding the origin and presence of the dorsal metacarpal artery branches. Knowledge of the anatomy of dorsal metacarpal arteries is especially applied in the surgical planning for flaps taken from the dorsum of the hand. The purpose of this study is to analyze the arterial anatomy of the dorsum of the hand, compare our observations with those of previous studies from the literature, and therefore to define parameters for surgical planning for flaps supplied by the dorsal metacarpal arteries. METHOD: Twenty-six dissections were performed at the dorsum of the right hand of 26 cadavers by making a distal-based U-shaped incision. After catheterization of the radial artery at the wrist level, a plastic dye solution with low viscosity and quick solidification was injected to allow adequate exposure of even small vessels. The radial artery and its branches, the dorsal arterial arch, the dorsal metacarpal arteries, the distal and proximal communicating branches of the palmar system, and the distal cutaneous branches were carefully dissected and identified. RESULTS: The distal cutaneous branches originating from the dorsal metacarpal arteries were observed in all cases; these were located an average of 1.2 cm proximal from the metacarpophalangeal joint. The first dorsal metacarpal artery presented in 3 different patterns regarding its course: fascial, subfascial, and mixed. The branching pattern of the radial artery at the first intermetacarpal space was its division into 3 branches. We observed the presence of the dorsal arterial arch arising from the radial artery in 100% of the cases. The distance between the dorsal arterial arch and the branching point of the radial artery was an average of 2 cm. The first and second dorsal metacarpal arteries were visualized in all cases. The third and fourth dorsal metacarpal arteries were visualized in 96.2% and 92.3% of cases, respectively. There was proximal and distal communication between the dorsal arterial arch and the palmar system through the communicating branches contributing to the dorsal metacarpal artery formation. CONCLUSION: At the dorsum of the hand there is a rich arterial net that anastomoses with the palmar arterial system. This anatomical characteristic allows the utilization of the dorsal aspect of the hand as potential donor site for cutaneous flaps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue-to-tissue interfaces are commonly present in all tissues exhibiting structural, biological and chemical gradients serving a wide range of physiological functions. These interfaces are responsible for mediation of load transfer between two adjacent tissues. They are also important structures in sustaining the cellular communications to retain tissueâ s functional integration and homeostasis. [1] All cells have the capacity to sense and respond to physical and chemical stimulus and when cultured in three-dimensional (3D) environments they tend to perform their function better than in two-dimensional (2D) environments. Spatial and temporal 3D gradient hydrogels better resemble the natural environment of cells in mimicking their extracellular matrix. [2] In this study we hypothesize that differential functional properties can be engineered by modulation of macromolecule gradients in a cell seeded threedimensional hydrogel system. Specifically, differential paracrine secretory profiles can be engineered using human Bone Marrow Stem Cells (hBMSCâ s). Hence, the specific objectives of this study are to: assemble the macromolecular gradient hydrogels to evaluate the suitablity for hBMSCâ s encapsulation by cellular viability and biofunctionality by assessing the paracrine secretion of hBMSCâ s over time. The gradient hydrogels solutions were prepared by blend of macromolecules in one solution such as hyaluronic (HA) acid and collagen (Col) at different ratios. The gradient hydrogels were fabricated into cylindrical silicon moulds with higher ratio solutions assembled at the bottom of the mould and adding the two solutions consecutively on top of each other. The labelling of the macromolecules was performed to confirm the gradient through fluorescence microscopy. Additionally, AFM was conducted to assess the gradient hydrogels stiffness. Gradient hydrogels characterization was performed by HA and Col degradation assay, degree of crosslinking and stability. hBMSCâ s at P3 were encapsulated into each batch solution at 106 cells/ml solution and gradient hydrogels were produced as previously described. The hBMSCâ s were observed under confocal microscopy to assess viability by Live/Dead® staining. Cellular behaviour concerning proliferation and matrix deposition was also performed. Secretory cytokine measurement for pro-inflammatory and angiogenesis factors was carried out using ELISA. At genomic level, qPCR was carried out. The 3D gradient hydrogels platform made of different macromolecules showed to be a suitable environment for hBMSCâ s. The hBMSCâ s gradient hydrogels supported high cell survival and exhibited biofunctionality. Besides, the 3D gradient hydrogels demonstrated differentially secretion of pro-inflammatory and angiogenic factors by the encapsulated hBMSCâ s. References: 1. Mikos, AG. et al., Engineering complex tissues. Tissue Engineering 12,3307, 2006 2. Phillips, JE. et al., Proc Natl Acad Sci USA, 26:12170-5, 2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering that the future of the construction sector in most European countries will mainly lie in the renovation of the existing building stock, in the next coming years thousands of energy inefficient buildings will need renovation to force EU member states to reach the EU 2020 targets and implement the Energy Performance of Buildings Directive (EPBD). Seeing the actual crisis in the construction sector as an opportunity, this work aims to develop a concept for prefabricated customizable sandwich panels for the multifunctional renovation of buildings, focusing also on technological innovation. More than a conventional solution, this proposal aims to combine sustainable and recycled building materials, available technologies and systems with advanced design and manufacturing tools within an integrated and mass-customizable approach of advanced building renovation prefabricated solutions. The adoption of these new proposed solutions would improve the living standards of the inhabitants of our cities, reducing energy inefficiency and other existing construction/renovation problems, while enabling some advanced features like the incorporation of technical modules that could even monitor the building performance during its full lifetime and the living conditions of its occupants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of prefabricated hybrid composite plates (HCPs) as a seismic retrofitting solution for damaged interior RC beam-column joints is experimentally studied. HCP is composed of a thin plate made of strain hardening cementitious composite (SHCC) reinforced with CFRP sheets/laminates. Two full-scale severely damaged interior beam-column joints are retrofitted using two different configurations of HCPs. The effectiveness of these retrofitting solutions mainly in terms of hysteretic response, dissipated energy, degradation of secant stiffness, displacement ductility and failure modes are compared to their virgin states. According to these criteria, both solutions resulted in superior responses regarding the ones registered in their virgin states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glazing is a technique used to retard fish deterioration during storage. This work focuses on the study of distinct variables (fish temperature, coating temperature, dipping time) that affect the thickness of edible coatings (water glazing and 1.5% chitosan) applied on frozen fish. Samples of frozen Atlantic salmon (Salmo salar) at -15, -20, and -25 °C were either glazed with water at 0.5, 1.5 or 2.5 °C or coated with 1.5% chitosan solution at 2.5, 5 or 8 °C, by dipping during 10 to 60 s. For both water and chitosan coatings, lowering the salmon and coating solution temperatures resulted in an increase of coating thickness. At the same conditions, higher thickness values were obtained when using chitosan (max. thickness of 1.41±0.05 mm) compared to water (max. thickness of 0.84±0.03 mm). Freezing temperature and crystallization heat were found to be lower for 1.5% chitosan solution than for water, thus favoring phase change. Salmon temperature profiles allowed determining, for different dipping conditions, whether the salmon temperature was within food safety standards to prevent the growth of pathogenic microorganisms. The concept of safe dipping time is proposed to define how long a frozen product can be dipped into a solution without the temperature raising to a point where it can constitute a hazard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to determine the lethal dose (96-h LD50) of the bacteria Aeromonas hydrophila to matrinxã, Brycon amazonicus, to be applied in challenge tests, 90 fish (63.23 ± 6.39 g) were divided into five treatments, with different bacterial solutions: T1 - Control (0.9% NaCl saline solution); T2 (4 x 10(11) cells/ mL); T3 (5 x 10(11) cells/ mL); T4 (1.36 x 10(12) cells/ mL) and T5 (3.06 x 10(12) cells/ mL). Fish were previously anesthetized with benzocaine (60 mg L-1), inoculated in the peritoneal cavity with the bacterial suspensions and then distributed into fifteen 80-L test chambers, where the water variables were monitored and fish mortality was observed. The experiment was randomly designed in three replicates and the 96-h LD50 was estimated according to the trimmed Spearman-Karber method. Water quality variables remained within adequate ranges for fish health and performance. Fish mortality rate increased with the bacterial concentrations of A. hydrophila (T1 = 0%; T2 = 16.66%; T3 = 44.44%; T4 = 72.22% and T5 = 100%), and the first mortalities were observed after 57 h, although the signs of the bacterial infection were already observed 24 h after the inoculation. The results indicate that the 96-h LD50 value of A. hydrophila to matrinxã is 6.66 x 10(11) cells/ mL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Mechanical Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the low frequency absorption cross section of spherically symmetric nonextremal d-dimensional black holes. In the presence of α′ corrections, this quantity must have an explicit dependence on the Hawking temperature of the form 1/TH. This property of the low frequency absorption cross section is shared by the D1-D5 system from type IIB superstring theory already at the classical level, without α′ corrections. We apply our formula to the simplest example, the classical d-dimensional Reissner-Nordstr¨om solution, checking that the obtained formula for the cross section has a smooth extremal limit. We also apply it for a d-dimensional Tangherlini-like solution with α′3 corrections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of colloidal MxFe3-xO4 (M = Mn, Co, Ni; x = 0–1) nanoparticles with diameters ranging from 6.8 to 11.6 nm was synthesized by hydrothermal reaction in aqueous medium at low temperature (200 °C). Energy-dispersive X-ray microa-nalysis and inductively coupled plasma spectrometry confirms that the actual elemental compositions agree well with the nominal ones. The structural properties of obtained nanoparticles were investigated by using powder X-ray diffraction, Raman scattering, Mössbauer spectroscopy, and electron microscopy. The results demonstrate that our synthesis technique leads to the formation of chemically uniform single-phase solid solution nanoparticles with cubic spinel structure, confirming the intrinsic doping. Magnetic studies showed that, in comparison to Fe3O4, the saturation magnetization of MxFe3-xO4 (M = Mn, Ni) decreases with increasing dopant concentration, while Co-doped samples showed similar saturation magnetizations. On other hand, whereas Mn- and Ni-doped nanoparticles exhibits superparamagnetic behavior at room temperature, ferromagnetism emerges for CoxFe3-xO4 nanoparticles, which can be tuned by the level of Co doping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays cities are facing several environmental problems due to the population migration to urban areas, which is causing urban sprawl. This way, it is very important to define solutions to improve Land Use Efficiency (LUE). This article proposes the use of community buildings features as a solution to increase land use efficiency. Community buildings consider the design of shared building spaces to reduce the floor area of buildings. This work tests the performance of some case-study buildings regarding LUE to analyse its possible pros and cons. A quantifiable method is used to assess buildingsâ LUE, which considers the number of occupants, the gross floor area, the functional area, the implantation area and the allotment area. Buildings with higher values for this index have reduced environmental impacts because they use less construction materials, produce less construction and demolition wastes and require less energy for building operation. The results showed that the use of community building features can increase Land Use Efficiency of buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de International Master in Sustainable Built Environment