894 resultados para solid state Nuclear Magnetic Resonance spectroscopy
Resumo:
he chemical potential of carbon in diamond, relative to its value in graphite, has been directly determined using a solid state electrochemical cell incorporating single crystal CaF2 as the solid electrolyte. The cell can be represented as Pt, C(graphite) + CaC2 + CaF2double vertical barCaF2double vertical barCaF2 + CaC2 + C(diamond), Pt The reversible emf of this cell is directly related by the Nernst equation to the Gibbs free energy change for the conversion of diamond to graphite. The difference in the chemical potential of carbon in the two crystal structures varies linearly with temperature in the range 940 to 1260 K ?C(diamond) ? ?C(graphite) = 1100 + 4.64T (±50) J mol?1 On the average, the values given by the equation are 320 J mol?1 less positive than the currently accepted ones based on calorimetric studies. The difference is primarily in the enthalpy term.
Resumo:
Styryl coumarins generally yield centrosymmetric (alpha-mode, anti-HT) photodimers when subjected to irradiation in the solid state, However, the substitution of fluorine dramatically alters the packing mode and steers the molecules 4-(4-fluorostyryl)coumarin 1 and 4-(2-fluorostyryl)coumarin 2 to form a stereospecific photodimer, beta-mode, syn-HH across the styrenic double bond (yield 78-85%). The stereochemistry of the photodimer 2a has been established by X-ray crystallography. There is no evidence for the presence of C-H ... F interactions. The true nature of the weak atom-atom interactions called into play when fluorine is substituted is not clear, It is observed that the fluoro substituted compounds have greater crystal density than the corresponding unsubstituted ones.
Resumo:
An amorphous phase has been synthesized by mechanical alloying in a planetary mill over a nickel content range of 10�70 at.% in the Ti---Ni system and a copper content range of 10�50 at.% in the Ti---Cu system. In the case of ternary Ti---Ni---Cu alloys the glass-forming composition range has been found to be given by x = 10�20 for Ti60Ni40 ? xCux, x = 10 � 30 for Ti50Ni50 ? xCux and x = 10 � 40 for Ti40Ni60 ? xCux alloys. The difficulty in the amorphization of copper-rich compositions is explained in the light of enthalpy composition diagrams calculated for the ternary solid solution and the amorphous phase.
Resumo:
C17H19ClO, M(r) = 274.7, triclinic, P1BAR, a = 11.154 (3), b = 12.685 (2), c = 12.713 (2) angstrom, alpha = 100.68 (1), beta = 113.58 (1), gamma = 104.50 (2)-degrees, V = 1511.1 (6) angstrom3, Z = 4, D(m) = 1.22, D(x) = 1.215 Mg m-3, Cu K-alpha, lambda = 1.5418 angstrom, mu = 2.16 mm-1, F(000) = 584, T = 293 K, R = 0.057 for 3481 observed reflections. The title compound is photostable in the crystalline state and lattice-energy calculations have been employed to rationalize the photobehaviour. The well-known beta-steering ability of the chloro group is not operative in this system as there are no Cl...Cl interactions in the crystal lattice. All five benzylidene-DL-piperitone structures so far studied are alpha-packed and the molecular topology appears to be a deciding factor even in the presence of steering groups.
Resumo:
A solid-state miscibility gap in the pseudo-binary system BaO-SrO is delineated by X-ray diffraction studies on samples equilibrated either in vacuum or under flowing inert gas at temperatures between 1073 and 1423 K. For the SrxBa1-xO solid solution an asymmetric phase boundary, characterized by a critical temperature of 1356 (+/-4) K and composition x=0.55 (+/-0.008), is obtained. Thermodynamic mixing properties of the solid solution, derived from the experimental phase boundary compositions and temperatures, can be represented by the expression: Delta G(E)=x(1-x){33 390-7.09T)x+(29 340-6.23T)(1-x)} J mol(-1)It is necessary to include excess entropy terms to obtain a good fit to the experimental data. The chemical spinodal curve is computed from the thermodynamic parameters
Resumo:
Abstract: The dynamics of poly(2-vinylpyridine) in chloroform solution has been examined by C-13 spin-lattice relaxation time and NOE measurements as a function of temperature. The experiments were performed at 50.3 and 100.6 MHz. The backbone carbon relaxation data have been analyzed in terms of six motional models. Among these models, the models which consider conformational transitions and bond librations for the backbone were found to be more successful. Pyridyl ring motion has been modeled as a restricted rotation with the rotational amplitude varying with temperature. The activation energy parameters obtained from the relaxation data of the pyridyl ring carbon have been compared with the energy barrier for ring rotation estimated from conformational energy calculations using the AM1 semiempirical quantum chemical method. The results of the conformational energy calculations support the description of pyridyl ring motion as a restricted rotation.
Resumo:
Measurement of dipolar couplings using separated local field (SLF) NMR experiment is a powerful tool for structural and dynamics studies of oriented molecules such as liquid crystals and membrane proteins in aligned lipid bilayers. Enhancing the sensitivity of such SLF techniques is of significant importance in present-day solid-state NMR methodology. The present study considers the use of adiabatic cross-polarization for this purpose, which is applied for the first time to one of the well-known SLF techniques, namely, polarization inversion spin exchange at the magic angle (PISEMA). The experiments have been carried out on a single crystal of a model peptide, and a dramatic enhancement in signal-to-noise up to 90% has been demonstrated.
Resumo:
Phase relations in the system Ca-Pb-O at 1100 K have been determined by equilibrating 18 compositions in the ternary and identifying the phases present in quenched samples by X-ray diffraction and energy dispersive X-ray analysis (EDX). Only one ternary compound Ca2PbO4 was found to be present. The compound coexists with CaO and PbO. The intermetallic compounds Ca2Pb, Ca5Pb3 and CaPb and liquid alloys are in equilibrium with CaO. The standard Gibbs energies of formation of Ca2PbO4 (880 - 1100 K) and Pb3O4 (770 - 910 K) were determined using solid-state cells based on yttria-stabilized zirconia as the solid electrolyte. Pure oxygen gas at 0.1 MPa was used as the reference electrode. For measurements on Ca2PbO4, a novel cell design with three electrodes in series, separated by solid electrolyte membranes, was used to avoid polarization of the electrode containing three solid phases. Two three-phase electrodes were used. The first absorbs the electrochemical flux of oxygen from the reference electrode to the measuring electrode. The other three-phase electrode, which is unaffected by the oxygen flux through the solid electrolyte, is used for electromotive force (EMF) measurement. The results from EMF studies were cross-checked using thermogravimetry (TG) under controlled oxygen partial pressures. The stability of Pb3O4 was investigated using a conventional solid-state cell with RuO2 electrodes. The results can be summarized by the following equations: 2CaO + PbO +1/2O(2) --> Ca2PbO4 Delta(r)G degrees/J mol(-1) = (- 128340 + 93.21 T/K) +/- 200 3PbO + 1/2O(2) --> Pb3O4 Delta(r)G degrees/J mol(-1) = (- 70060 + 77.5 T/K) +/- 150
Resumo:
NaBH4 reduction of a cage dione proceeds in a stereospecific fashion to give the endo,endo-diol. This reactivity is related to the crystal structure.