946 resultados para single-wave function
Resumo:
OBJECTIVES Objective evaluation of the impact of minimized extracorporeal circulation (MECC) on perioperative cognitive brain function in coronary artery bypass grafting (CABG) by electroencephalogram P300 wave event-related potentials and number connection test (NCT) as metrics of cognitive function. METHODS Cognitive brain function was assessed in 31 patients in 2013 with a mean age of 65 years [standard deviation (SD) 10] undergoing CABG by the use of MECC with P300 auditory evoked potentials (peak latencies in milliseconds) directly prior to intervention, 7 days after and 3 months later. Number connection test, serving as method of control, was performed simultaneously in all patients. RESULTS Seven days following CABG, cognitive P300 evoked potentials were comparable with preoperative baseline values [vertex (Cz) 376 (SD 11) ms vs 378 (18) ms, P = 0.39; frontal (Fz) 377 (11) vs 379 (21) ms, P = 0.53]. Cognitive brain function at 3 months was compared with baseline values [(Cz) 376 (11) ms vs 371 (14 ms) P = 0.09; (Fz) 377 (11) ms vs 371 (15) ms, P = 0.04]. Between the first postoperative measurement and 3 months later, significant improvement was observed [(Cz) 378 (18) ms vs 371 (14) ms, P = 0.03; (Fz) 379 (21) vs 371 (15) ms, P = 0.02]. Similar clearly corresponding patterns could be obtained via the number connection test. Results could be confirmed in repeated measures analysis of variance for Cz (P = 0.05) and (Fz) results (P = 0.04). CONCLUSIONS MECC does not adversely affect cognitive brain function after CABG. Additionally, these patients experience a substantial significant cognitive improvement after 3 months, evidentiary proving that the concept of MECC ensures safety and outcome in terms of brain function.
Resumo:
We report a new analysis of data from a multi-year study, some of which were previously published in the current journal. A longitudinal sample of 380 computer specialists was followed over two years, yielding three measures each of job satisfaction, organizational commitment, and turnover intentions, as well as actual turnover, and reasons for leaving, at Times 2 and 3. Career paths were more diverse than the classical distinction between stayers and leavers implies. Furthermore, although the largest single group of leavers cited “push” reasons, conforming to the classical withdrawal model, a sizable number were attracted to another job (“pull motivation”). In a three-wave structural equation model, job (dis)satisfaction predicted turnover, while organizational commitment exerted its influence only via its association with job satisfaction. As expected, however, attitudes predicted turnover only for participants with push motivation. Quitting, in turn, predicted an improvement in both satisfaction and commitment, indicating that it paid off for the individual. The necessity to study consequences of turnover and to distinguish between different subgroups of stayers and leavers is emphasized.
Resumo:
Since European settlement, there has been a dramatic increase in the density, cover and distribution of woody plants in former grassland and open woodland. There is a widespread belief that shrub encroachment is synonymous with declines in ecosystem functions, and often it is associated with landscape degradation or desertification. Indeed, this decline in ecosystem functioning is considered to be driven largely by the presence of the shrubs themselves. This prevailing paradigm has been the basis for an extensive program of shrub removal, based on the view that it is necessary to reinstate the original open woodland or grassland structure from which shrublands are thought to have been derived. We review existing scientific evidence, particularly focussed on eastern Australia, to question the notion that shrub encroachment leads to declines in ecosystem functions. We then summarise this scientific evidence into two conceptual models aimed at optimising landscape management to maximise the services provided by shrub-encroached areas. The first model seeks to reconcile the apparent conflicts between the patch- and landscape-level effects of shrubs. The second model identifies the ecosystem services derived from different stages of shrub encroachment. We also examined six ecosystem services provided by shrublands (biodiversity, soil C, hydrology, nutrient provision, grass growth and soil fertility) by using published and unpublished data. We demonstrated the following: (1) shrub effects on ecosystems are strongly scale-, species- and environment-dependent and, therefore, no standardised management should be applied to every case; (2) overgrazing dampens the generally positive effect of shrubs, leading to the misleading relationship between encroachment and degradation; (3) woody encroachment per se does not hinder any of the functions or services described above, rather it enhances many of them; (4) no single shrub-encroachment state (including grasslands without shrubs) will maximise all services; rather, the provision of ecosystem goods and services by shrublands requires a mixture of different states; and (5) there has been little rigorous assessment of the long-term effectiveness of removal and no evidence that this improves land condition in most cases. Our review provides the basis for an improved, scientifically based understanding and management of shrublands, so as to balance the competing goals of providing functional habitats, maintaining soil processes and sustaining pastoral livelihoods.
Resumo:
The single-layered gut epithelium represents the primary line of defense against environmental stressors; thereby monolayer integrity and tightness are essentially required to maintain gut health and function. To date only a few plant-derived phytochemicals have been described as affecting intestinal barrier function. We investigated the impact of 28 secondary plant compounds on the barrier function of intestinal epithelial CaCo-2/TC-7 cells via transepithelial electrical resistance (TEER) measurements. Apart from genistein, the compounds that had the biggest effect in the TEER measurements were biochanin A and prunetin. These isoflavones improved barrier tightness by 36 and 60%, respectively, compared to the untreated control. Furthermore, both isoflavones significantly attenuated TNFα-dependent barrier disruption, thereby maintaining a high barrier resistance comparable to nonstressed cells. In docking analyses exploring the putative interaction with the tyrosine kinase EGFR, these novel modulators of barrier tightness showed very similar values compared to the known tyrosine kinase inhibitor genistein. Both biochanin A and prunetin were also identified as potent reducers of NF-κB and ERK activation, zonula occludens 1 tyrosine phosphorylation, and metalloproteinase-mediated shedding activity, which may account for the barrier-improving ability of these isoflavones.
Resumo:
Gebiet: Chirurgie Abstract: Minimized Extracorporeal Circulation does not impair cognitive brain function after coronary artery bypass grafting – – Objectives – Objective evaluation of the impact of minimized extracorporeal circulation (MECC) on perioperative cognitive brain function in coronary bypass grafting (CABG) by Electroencephalogram (EEG) P 300 wave event related potentials (ERP) and number connection test ( NCT) as metrics of cognitive function. – – Methods – Cognitive brain function was assessed in 31 patients with a mean age of 65y (Standard Deviation/SD 10) undergoing coronary artery bypass grafting (CABG) by the use of MECC with P300 auditory evoked potentials (peak latencies in milliseconds [ms]) directly prior to intervention, 7 days after and 3 month later. Number connection test (NCT), serving as method of control, was performed simultaneously in all patients. – – Results – Seven days following CABG, cognitive P300 evoked potentials were comparable to preoperative baseline values (vertex [Cz] 376 (SD 11) ms vs. 378 (18) ms, p=0.39, frontal [Fz] 377 (11) vs. 379 (21) ms, p=0.53). Cognitive brain function showed at 3 months compared to baseline values ([Cz] 376 (11) ms vs. 371 (14 ms) p=0.09, [Fz] 377 (11) ms vs. 371 (15) ms, p=0.04. Between the first postoperative measurement and 3 months later, significant improvement was observed ([Cz] 378 (18) ms vs. 371 (14) ms, p=0.03, [Fz] 379 (21) vs. 371 (15) ms, p=0.02). Similar clearly corresponding patterns could be obtained via number connection test. Results could be confirmed in repeated measures analysis of variance for Cz (p = 0.05) and (Fz) results (p = 0.04). – – Conclusions
Resumo:
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centers from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.
Resumo:
The sigma (σ) subunit of eubacterial RNA polymerase is required for recognition of and transcription initiation from promoter DNA sequences. One family of sigma factors includes those related to the primary sigma factor from E. coli, σ70. Members of the σ70 family have four highly conserved domains, of which regions 2 through 4 are present in all members. Region 1 can be subdivided into regions 1.1 and 1.2. Region 1.1 affects DNA binding by σ 70 alone, as well as transcription initiation by holoenzyme. Region 1.2, present and highly conserved in most sigma factors, has not yet been assigned a putative function, although previous work demonstrated that it is not required for either association with the core subunits of RNA polymerase or promoter specific binding by holoenzyme. This study primarily investigates the functional role of region 1.2 during transcription initiation. In vivo and in vitro characterization of thirty-two single amino acid substitutions targeted to region 1.2 of E. coli σ70 as well as a deletion of region 1.2, revealed that mutations in region 1.2 can affect promoter binding, open complex formation, initiated complex formation, and the transition from abortive transcription to elongation. The relative degree of solvent exposure of several positions in region 1.2 has been determined, with positions 116 and 122 likely to be located near the surface of σ70. ^ During the course of this study, the existence of two “wild type” variants of E. coli σ70 was discovered. The identity of amino acid 149 has been reported variably as either arginine or aspartic acid in published articles and in online databases. In vivo and in vitro characterization of the two reported variations of E. coli σ70 (N149 and D149) has determined that the two variants are functionally equivalent. However, in vivo and in vitro characterization of single amino acid substitutions and a region 1.2 deletion in the context of each variant background revealed that the behavior of some mutations are greatly affected by the identity of amino acid 149. ^
Resumo:
Several congenital syndromes associated with anterior segment (AS) anomalies can lead to impaired vision and glaucoma, such as nail-patella syndrome (NPS), caused by mutations in the LIM homeodomain transcription factor LMX1B and Axenfeld-Rieger's syndrome (ARS), caused by mutations in the bicoid-related homeodomain transcription factor PITX2. Targeted mutations in lmx1b and pitx2 and RNA in situ analysis reveal that both genes are required for AS development and are co-expressed within the periocular mesenchyme, suggesting they participate in a shared genetic pathway. Lmx1b homozygous mutants display iris and corneal stroma hypoplasia, and defects in ciliary body formation. In contrast, pitx2 homozygous mutants exhibit a more severe phenotype: the AS chamber, corneal endothelium, and extraocular muscles (EOM) fail to develop. The absence of EOM in pitx2 mutants suggests pitx2 acts upstream of lmx1b, or that other lmx1b family members, such as lmx1a, can compensate for lmx1b function. Lmxla/lmx1b double homozygous mutants have a reduced capacity to generate EOM, implying that lmx1 gene products have a redundant function in EOM development and that lmx1 family members may act downstream of pitx2. However, analysis of pitx2 expression in the AS tissues of lmx1b mutants and reciprocal studies of lmx1b expression in pitx2 mutants indicate that these genes do not function in a simple linear pathway. Instead, lmx1b and pitx2 may regulate a shared set of downstream targets or both genes may work in parallel transcribing unique targets required for a common biological process. Ultrastructural analysis of lmx1b and pitx2 mutant corneas indicates that collagen fibrillogenesis is perturbed, revealing a common role for both genes in the deposition of extracellular matrix. Furthermore, lmx1b/pitx2 double heterozygotes develop corneal opacities not observed in single heterozygotes demonstrating that lmx1b and pitx2 genetically interact. Data suggests that defects in the basement membrane of the corneal endothelium underlie the opacities observed in double heterozygotes. Additionally, double heterozygotes develop anterior synechias that occlude the trabecular meshwork, potentially blocking aqueous humor drainage. These data suggest that lmx1b and pitx2 are responsible for ECM deposition in multiple cell types and imply that such defects may contribute to the glaucomas observed in NPS and ARS patients. ^
Resumo:
Pem, a member of the PEPP homeobox family, is expressed in somatic cells in male and female reproductive tissues. In the adult murine testis, Pem is specifically expressed in Sertoli cells, where it is restricted to stages IV–VIII of the seminiferous epithelial cycle. To identify Pem's function in Sertoli cells, transgenic mice were generated that express Pem in Sertoli cells during all stages of the seminiferous epithelial cycle. This resulted in an increase in double-strand DNA breaks in preleptotene spermatocytes and single-strand DNA breaks in elongating spermatids. My results suggest that Pem regulates Sertoli-cell genes that encode secreted or cell-surface proteins that serve to control premeiotic DNA replication, DNA repair, and/or chromatin remodeling in the adjacent germ cells. Three additional transgenic mouse containing varying lengths of the Pem male-specific promoter (Pp) were generated to identify the sequences responsible for regulating Pem expression in the testis and epididymis. My analysis suggests that there are at least two regulatory regions in the Pem Pp. In the testis, region II directs androgen-dependent expression specifically in Sertoli cells whereas region I fine-tunes stage-specific expression by acting as a negative regulator. In the epididymis, region II confers androgen-dependent, developmentally-regulated expression in the caput whereas region I prevents inappropriate expression in the corpus. I also report the identification and characterization of two human PEPP family members related to Pem that I have named hPEPP1 and hPEPP2. The hPEPP1 and hPEPP2 homeodomains are more closely related to PEPP subfamily homeodomains than to any other homeodomain subfamily. Both genes are localized to the specific region of the human X chromosome that shares synteny with the region on the murine X chromosome containing three PEPP homeobox genes, Pem, Psx-1, and Psx-2. hPEPP1 and hPEPP2 mRNA expression is restricted to the testis but is aberrantly expressed in tumor cells of different origins, analogous to the expression pattern of Pem but not of Psx-1 or Psx-2. Unlike all known PEPP members, neither hPEPP1 nor hPEPP2 are expressed in placenta, which suggests that the regulation of the PEPP family has undergone significant alteration since the split between hominids and rodents. ^
Resumo:
Background. Research investigating symptom management in patients with chronic obstructive pulmonary disease (COPD) largely has been undertaken assuming the homeostatic construct, without regard to potential roles of circadian rhythms. Temporal relations among dyspnea, fatigue, peak expiratory flow rate (PEFR) and objective measures of activity/rest have not been reported in COPD. ^ Objectives. The specific aims of this study were to (1) explore the 24-hour patterns of dyspnea, fatigue, and PEFR in subjects with COPD; (2) examine the relations among dyspnea, fatigue, and PEFR in COPD; and (3) examine the relations among objective measures of activity/rest and dyspnea, fatigue, and PEFR in COPD. ^ Methods. The repeated-measures design involved 10 subjects with COPD who self-assessed dyspnea and fatigue by 100 mm visual analog scales, and PEFR by peak flow meter in their home 5 times a day for 8 days. Activity/rest was measured by wrist actigraphy. Single and population mean cosinor analyses and correlations were computed for dyspnea, fatigue, and PEFR; correlations were done among these variables and activity/rest. ^ Results. Circadian rhythms were documented by single cosinor analysis in 40% of the subjects for dyspnea, 60% for fatigue, and 60% for PEFR. The population cosinor analysis of PEFR yielded a significant rhythm (p < .05). The 8-day 24-hour means of dyspnea and fatigue was moderately correlated (r = .48, p < .01). Dyspnea and PEFR, and fatigue and PEFR, were weakly correlated in a negative way (r = −.11, p < .05 and r = −.15, p < .01 respectively). Weak to moderate correlations (r = .12–.34, p < .05) were demonstrated between PEFR and mean activity level measured up to 4 hours before PEFR measurement. ^ Conclusions. The findings suggest that (1) the dyspnea and fatigue experienced by COPD patients are moderately related, (2) there is a weak to modest positive relation between PEFR and activity levels, and (3) temporal variation in lung function may not affect the dyspnea and fatigue experienced by patients with COPD. Further research, examining the relations among dyspnea, fatigue, PEFR, and activity/rest is needed. Replication of this study is suggested with a larger sample size. ^
Resumo:
Tuberculosis is the leading cause of death in the world due to a single infectious agent, making it critical to investigate all aspects of the immune response mounted against the causative agent, Mycobacterium tuberculosis , in order to better treat and prevent disease. Previous observations show a disparity in the ability to control mycobacterial growth between mouse strains sufficient in C5, such as C57BL/6 and B10.D2/nSnJ, and those naturally deficient in C5, such as A/J and B10.D2/nSnJ, with C5 deficient mice being more susceptible. It has been shown that during M. tuberculosis infection, C5 deficient macrophages have a defect in production of interleukin (IL)-12, a cytokine involved in the cyclical activation between infected macrophages and effector T cells. T cells stimulated by IL-12 produce interferon (IFN)-γ, the signature cytokine of T helper type 1 (Th1) cells. It is known that a cell-mediated Th1 response is crucial for control of M. tuberculosis in the lungs of humans and mice. This study demonstrates that murine T cells express detectable levels of CD88, a receptor for C5a (C5aR), following antigen presentation by macrophages infected with mycobacteria. T cells from C5 deficient mice infected with M. tuberculosis were found to secrete less IFN-γ and had a reduced Th1 phenotype associated with fewer cells expressing the transcription factor, T-box expressed in T cells (T-bet). The altered Th1 phenotype in M. tuberculosis infected C5 deficient mice coincided with a rise in IL-4 and IL-10 secretion from Th2 cells and inducible regulatory T cells, respectively. It was found that the ineffective T cell response to mycobacteria in C5 deficient mice was due indirectly to a lack of C5a via poor priming by infected macrophages and possibly by a direct interaction between T cells and C5a peptide. Therefore, these studies show a link between the cells of the innate and adaptive arms of the immune system, macrophages and T cells respectively, that was mediated by C5a using a mouse model of M. tuberculosis infection. ^
Resumo:
Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.
Neocortical hyperexcitability defect in a mutant mouse model of spike-wave epilepsy, {\it stargazer}
Resumo:
Single-locus mutations in mice can express epileptic phenotypes and provide critical insights into the naturally occurring defects that alter excitability and mediate synchronization in the central nervous system (CNS). One such recessive mutation (on chromosome (Chr) 15), stargazer(stg/stg) expresses frequent bilateral 6-7 cycles per second (c/sec) spike-wave seizures associated with behavioral arrest, and provides a valuable opportunity to examine the inherited lesion associated with spike-wave synchronization.^ The existence of distinct and heterogeneous defects mediating spike-wave discharge (SWD) generation has been demonstrated by the presence of multiple genetic loci expressing generalized spike-wave activity and the differential effects of pharmacological agents on SWDs in different spike-wave epilepsy models. Attempts at understanding the different basic mechanisms underlying spike-wave synchronization have focused on $\gamma$-aminobutyric acid (GABA) receptor-, low threshold T-type Ca$\sp{2+}$ channel-, and N-methyl-D-aspartate receptor (NMDA-R)-mediated transmission. It is believed that defects in these modes of transmission can mediate the conversion of normal oscillations in a trisynaptic circuit, which includes the neocortex, reticular nucleus and thalamus, into spike-wave activity. However, the underlying lesions involved in spike-wave synchronization have not been clearly identified.^ The purpose of this research project was to locate and characterize a distinct neuronal hyperexcitability defect favoring spike-wave synchronization in the stargazer brain. One experimental approach for anatomically locating areas of synchronization and hyperexcitability involved an attempt to map patterns of hypersynchronous activity with antibodies to activity-induced proteins.^ A second approach to characterizing the neuronal defect involved examining the neuronal responses in the mutant following application of pharmacological agents with well known sites of action.^ In order to test the hypothesis that an NMDA receptor mediated hyperexcitability defect exists in stargazer neocortex, extracellular field recordings were used to examine the effects of CPP and MK-801 on coronal neocortical brain slices of stargazer and wild type perfused with 0 Mg$\sp{2+}$ artificial cerebral spinal fluid (aCSF).^ To study how NMDA receptor antagonists might promote increased excitability in stargazer neocortex, two basic hypotheses were tested: (1) NMDA receptor antagonists directly activate deep layer principal pyramidal cells in the neocortex of stargazer, presumably by opening NMDA receptor channels altered by the stg mutation; and (2) NMDA receptor antagonists disinhibit the neocortical network by blocking recurrent excitatory synaptic inputs onto inhibitory interneurons in the deep layers of stargazer neocortex.^ In order to test whether CPP might disinhibit the 0 Mg$\sp{2+}$ bursting network in the mutant by acting on inhibitory interneurons, the inhibitory inputs were pharmacologically removed by application of GABA receptor antagonists to the cortical network, and the effects of CPP under 0 Mg$\sp{2+}$aCSF perfusion in layer V of stg/stg were then compared with those found in +/+ neocortex using in vitro extracellular field recordings. (Abstract shortened by UMI.) ^
Resumo:
We investigated the induction and physiological role of Thr18 and Ser20 phosphorylation of p53 in response to DNA damage caused by treatment with ionizing (IR) or ultraviolet (UV) radiation. Polyclonal antibodies specifically recognizing phospho-Thr18 and phospho-Ser20 were used to detect p53 phosphorylation in vivo. Analyses of five wild-type (wt) p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 and Ser20 after treatment with IR or UV. Importantly, the phosphorylation of p53 at Thr18 and Ser20 correlated with induction of the p53 downstream targets p21Waf1/Cip1 (p21) and Mdm-2, suggesting a transactivation enhancing role for Thr18 and Ser20 phosphorylation. Whereas Thr18 phosphorylation appears to abolish side-chain hydrogen bonding between Thr18 and Asp21, Ser20 phosphorylation may introduce charge attraction between Ser20 and Lys24. Both of these interactions could contribute to stabilizing α-helical conformation within the p53 transactivation domain. Mutagenesis-derived phosphorylation mimicry of p53 at Thr18 and Ser20 by Asp substitution (p53T18D/S20D) altered transactivation domain conformation and significantly reduced the interaction of p53 with the transactivation repressor Mdm-2. Mdm-2 interaction was also reduced with p53 containing a single site Asp substitution at Ser20 (p53S20D) and with the Thr18/Asp21 hydrogen bond disrupting p53 mutants p53T18A, p53T18D and p53D21A. In contrast, no direct effect was observed on the interaction of p53T18A, p53T18D and p53D21A with the basal transcription factor TAF II31. However, prior incubation of p53T18A, p53T18D and p53D21A with Mdm-2 modulated TAFII31 interaction, suggesting Mdm-2 blocks the accessibility of p53 to TAFII31. Consistently, p53-null cells transfected with p53S20D and p53T18A, p53T18D and p53D21A demonstrated enhanced endogenous p21 expression; transfection with p53T18D/S20D most significantly enhanced p21 and fas/APO-1 (fas ) expression. Expression of p53T18A, p53T18D and p53D21A in p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. Cell proliferation was also significantly curtailed in p53-null cells transfected with p53T18D/S20D relative to cells transfected with wt p53. We conclude the irradiation-induced phosphorylation of p53 at Thr18 and Ser20 alters the α-helical conformation of its transactivation domain. Altered conformation reduces direct interaction with the transrepressor Mdm-2, enhancing indirect recruitment of the basal transcription factor TAFII31, facilitating sequence-specific transactivation function resulting in proliferative arrest. ^
Resumo:
The large discrepancy between field and laboratory measurements of mineral reaction rates is a long-standing problem in earth sciences, often attributed to factors extrinsic to the mineral itself. Nevertheless, differences in reaction rate are also observed within laboratory measurements, raising the possibility of intrinsic variations as well. Critical insight is available from analysis of the relationship between the reaction rate and its distribution over the mineral surface. This analysis recognizes the fundamental variance of the rate. The resulting anisotropic rate distributions are completely obscured by the common practice of surface area normalization. In a simple experiment using a single crystal and its polycrystalline counterpart, we demonstrate the sensitivity of dissolution rate to grain size, results that undermine the use of "classical" rate constants. Comparison of selected published crystal surface step retreat velocities (Jordan and Rammensee, 1998) as well as large single crystal dissolution data (Busenberg and Plummer, 1986) provide further evidence of this fundamental variability. Our key finding highlights the unsubstantiated use of a single-valued "mean" rate or rate constant as a function of environmental conditions. Reactivity predictions and long-term reservoir stability calculations based on laboratory measurements are thus not directly applicable to natural settings without a probabilistic approach. Such a probabilistic approach must incorporate both the variation of surface energy as a general range (intrinsic variation) as well as constraints to this variation owing to the heterogeneity of complex material (e.g., density of domain borders). We suggest the introduction of surface energy spectra (or the resulting rate spectra) containing information about the probability of existing rate ranges and the critical modes of surface energy.