923 resultados para shoulder shifts
Resumo:
HeI photoelectron spectra of 1:1 electron donor-acceptor complexes are discussed in the light of molecular orbital calculations. The complexes discussed include those formed by BH3, BF3 and SO2. Some systematics have been found in the ionization energy shifts of the complexes compared to the free components and these are related to the strength of the donor-acceptor bond. Hel spectra of hydrogen bonded complexes are discussed in comparison with results from MO calculations. Limitations of such studies as well as scope for further investigations are indicated.
Resumo:
This working paper develops an approach to the analysis of care as it is evident in the policies and practices of employing organisations. We identify how notions of care are incorporated in myriad and multi-faceted ways that may support, survey and control workers, as well as having implications for employers, managers, employees and workers. Aspects of care can be found in a range of statutory duties, policies and related activities, including: health and safety, equality and diversity, parental leave, religious observance, bullying and harassment, personal development, voluntary redundancy, early retirement, employer pension schemes, grievance procedures, and dismissal. The conceptual framework of organisation carescapes is offered as an aid to the analysis of employee policies and services. These policies and services are transformed by shifts in supranational and national policies such as European Union (EU) economic strategies and national legislation on disability rights legislation, age discrimination and flexible working, and changes in labour market competitiveness. In conclusion, we consider how the framework of organisation carescapes is informing research design in our and our colleagues’ ongoing programme of research.
Resumo:
Critical incidents have had an important role in service quality and service management research. The focus of critical-incident studies has gradually shifted from separate acts and episodes towards relationships, and even switching from one relationship to another. The Critical Incident Technique has mainly been used when studying the service sector, concentrating on the customer's perception of critical incidents. Although some studies have considered the perceptions of employees important, critical incidents have not been considered a tool for studying internal relationships to any larger extent. This paper takes a process approach and shifts the focus from an external to an internal setting. It puts forward a new technique for analysing internal relationships from a critical-incident perspective. The technique captures the dynamism in relationships through considering internal critical incidents as micro-processes affecting not only internal but also external relationships.
Resumo:
Rare earth exchanged H–Y zeolites were prepared by simple ion exchange methods at 353 K and have been characterized using different physicochemical techniques. A strong peak around 58 ppm in the 27Al{1H} MAS NMR spectra of these zeolites suggests a tetrahedral coordination for the framework aluminium. Small peak at or near 0 ppm is due to hexa-coordinated extra-framework aluminium and a shoulder peak near 30 ppm is a penta-coordinated aluminium species; [Al(OH)4]−. The vapor-phase benzene alkylation with 1-decene and 1-dodecene was investigated with these catalytic systems. Under the reaction conditions of 448 K, benzene/olefin molar ratio of 20 and time on stream 3 h, the most efficient catalyst was CeH–Y which showed more than 70% of olefin conversion with 48.5% 2-phenyldecane and 46.8%, 2-phenyldodecane selectivities with 1-decene and 1-dodecene respectively.
Resumo:
A computational scheme has been developed for strongly interacting systems wherein the intermolecular interaction is introduced as a charge-induced-dipole term. Within this approximation, the model Hamiltonian is exactly solved using a valence-bond basis. The validity of the scheme has been checked by use of exact calculations on small model systems. The method has been applied to finite polyenes to study the shifts in the ground-state energies and dipole-allowed excited-state energies in the presence of neighbors. Our calculations show a red shift in the optical gap of the infinite polyene by 0.124 eV, which is rather small compared to the experimental red shift. This is traced to the larger inaccuracy in the calculated shift in the excited state. The calculated shift in the ground-state energies are more accurate and hence the method is better suited for studying the effect of intermolecular interactions on the properties of the ground state.
Resumo:
This paper describes the design and development of a Fiber Bragg Grating (FBG) sensor system for monitoring tsunami waves generated in the deep ocean. An experimental setup was designed and fabricated to simulate the generation and propagation of a tsunami wave. The characteristics and efficiency of the developed FBG sensor was evaluated with a standard commercial Digiquartz sensor. For real time monitoring of tsunami waves, FBG sensors bonded to a cantilever is used and the wavelength shifts (Delta lambda(B)) in the reflected spectra resulting from the strain/pressure imparted on the FBGs have been recorded using a high-speed Micron Optics FBG interrogation system. The parameters sensed are the signal burst during tsunami generation and pressure variations at different places as the tsunami wave propagates away from the source of generation. The results obtained were compared with the standard commercial sensor used in tsunami detection. The observations suggest that the FBG sensor was highly sensitive and free from many of the constraints associated with the commercial tsunameter.
Resumo:
Silver iodide-based fast ion conducting glasses containing silver phosphate and silver borate have been studied. An attempt is made to identify the interaction between anions by studying the chemical shifts of31P and11B atoms in high resolution (HR) magic angle spinning (MAS) NMR spectra. Variation in the chemical shifts of31P or11B has been observed which is attributed to the change in the partial charge on the31P or11B. This is indicative of the change in the electronegativity of the anion matrix as a whole. This in turn is interpreted as due to significant interaction among anions. The significance of such interaction to the concept of structural unpinning of silver ions in fast ion conducting glasses is discussed.
Resumo:
Brachial plexus birth injury (BPBI) is caused by stretching, tearing or avulsion of the C5-C8 or Th1 nerve roots during delivery. Foetal-maternal disproportion is the main reason for BPBI. The goal of this study was to find out the incidence of posterior subluxation of the humeral head during first year of life in BPBI and optimal timing of the ultrasonographic screening of the glenohumeral joint. The glenohumeral congruity and posterior subluxation of the humeral head associated to muscle atrophy were assessed and surgical treatment of the shoulder girdle as well as muscle changes in elbow flexion contracture were evaluated. The prospective, population based part of the study included all neonates born in Helsinki area during years 2003-2006. Patients with BPBI sent to the Hospital for Children and Adolescents because of decreased external rotation, internal rotation contracture or deformation of the glenohumeral joint as well as patients with elbow flexion contracture were also included in this prospective study. The incidence of BPBI was calculated to be 3.1/1000 newborns in Helsinki area. About 80% of the patients with BPBI recover totally during the follow-up within the first year of life. Permanent plexus injury at the age of one year was noted in 20% of the patients (0.64/1000 newborns). Muscle imbalance resulted in sonographically detected posterior subluxation in one third of the patients with permanent BPBI. If muscle imbalance and posterior subluxation are left untreated bony deformities will develop. All patients with internal rotation contracture of the glenohumeral joint presented muscle atrophy of the rotator cuff muscles. Especially subscapular and infraspinous muscles were affected. A correlation was found particularly between greatest thickness of subscapular muscle and subluxation of the humeral head, degree of glenoid retroversion, as well as amount of internal rotation contracture. Supinator muscle atrophy was evident among all the studied patients with elbow flexion contracture. Brachial muscle pathology seemed to be an important factor for elbow flexion contracture in BPBI. Residual dysfunction of the upper extremity may require operative treatment such as tendon lengthening, tendon transfers, relocation of the humeral head or osteotomy of the humerus. Relocation of the humeral head improved the glenohumeral congruency among patients under 5 years of age. Functional improvement without remodeling of the glenohumeral joint was achieved by other reconstructive procedures. In conclusion: Shoulder screening by US should be done to all patients with permanent BPBI at the age of 3 and 6 months. Especially atrophy of the subscapular muscle correlates with glenohumeral deformity and posterior subluxation of the humeral head, which has not been reported in previous studies. Permanent muscle changes are the main reason for diminished range of motion of the elbow and forearm. Relocation of the humeral head, when needed, should be performed under the age of 5 years.
Resumo:
By employing X-ray photoelectron spectroscopy (XPS), we have been able to establish the occurrence of charge-transfer doping in few-layer graphene covered with electron acceptor (TCNE) and donor (TTF) molecules. We have performed quantitative estimates of the extent of charge transfer in these complexes and elucidated the origin of unusual shifts of their Raman G-bands and explained the differences in the dependence of conductivity on n- and p-doping. The study unravels the cause of the apparent difference between the charge-transfer doping and electrochemical doping. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The magnetically induced currents in organic monoring and multiring molecules, in Möbius shaped molecules and in inorganic all-metal molecules have been investigated by means of the Gauge-including magnetically induced currents (GIMIC) method. With the GIMIC method, the ring-current strengths and the ring-current density distributions can be calculated. For open-shell molecules, also the spin current can be obtained. The ring-current pathways and ring-current strengths can be used to understand the magnetic resonance properties of the molecules, to indirectly identify the effect of non-bonded interactions on NMR chemical shifts, to design new molecules with tailored properties and to discuss molecular aromaticity. In the thesis, the magnetic criterion for aromaticity has been adopted. According to this, a molecule which has a net diatropic ring current might be aromatic. Similarly, a molecule which has a net paratropic current might be antiaromatic. If the net current is zero, the molecule is nonaromatic. The electronic structure of the investigated molecules has been resolved by quantum chemical methods. The magnetically induced currents have been calculated with the GIMIC method at the density-functional theory (DFT) level, as well as at the self-consistent field Hartree-Fock (SCF-HF), at the Møller-Plesset perturbation theory of the second order (MP2) and at the coupled-cluster singles and doubles (CCSD) levels of theory. For closed-shell molecules, accurate ring-current strengths can be obtained with a reasonable computational cost at the DFT level and with rather small basis sets. For open-shell molecules, it is shown that correlated methods such as MP2 and CCSD might be needed to obtain reliable charge and spin currents. The basis set convergence has to be checked for open-shell molecules by performing calculations with large enough basis sets. The results discussed in the thesis have been published in eight papers. In addition, some previously unpublished results on the ring currents in the endohedral fullerene Sc3C2@C80 and in coronene are presented. It is shown that dynamical effects should be taken into account when modelling magnetic resonance parameters of endohedral metallofullerenes such as Sc3C2@C80. The ring-current strengths in a series of nano-sized hydrocarbon rings are related to static polarizabilities and to H-1 nuclear magnetic resonance (NMR) shieldings. In a case study on the possible aromaticity of a Möbius-shaped [16]annulene we found that, according to the magnetic criterion, the molecule is nonaromatic. The applicability of the GIMIC method to assign the aromatic character of molecules was confirmed in a study on the ring currents in simple monocylic aromatic, homoaromatic, antiaromatic, and nonaromatic hydrocarbons. Case studies on nanorings, hexaphyrins and [n]cycloparaphenylenes show that explicit calculations are needed to unravel the ring-current delocalization pathways in complex multiring molecules. The open-shell implementation of GIMIC was applied in studies on the charge currents and the spin currents in single-ring and bi-ring molecules with open shells. The aromaticity predictions that are made based on the GIMIC results are compared to other aromaticity criteria such as H-1 NMR shieldings and shifts, electric polarizabilities, bond-length alternation, as well as to predictions provided by the traditional Hückel (4n+2) rule and its more recent extensions that account for Möbius twisted molecules and for molecules with open shells.
Resumo:
Interaction of the antileukemic drugs, cytosine-arabinoside (Ara-C) and adenosine-arabinoside (Ara-A) and a structural analogue, cytidine, with aromatic dipeptides has been studied by fluorescence and NMR spectroscopy. Ara-C and cytidine bind tryptophanyl and histidyl dipeptides but not tyrosyl dipeptides, while Ara-A does not bind to any of them. Both studies indicate association involving stacking of aromatic moieties. NMR spectra also indicate a protonation of the histidine moiety by Ara-C. In case of cytidine, the chemical shifts observed on binding to His-Phe imply that the backbone protons of the dipeptide participate in the binding. The conformation of the sugar and the base seem to play a very important role in the binding phenomenon as three similar molecules, Ara-C, Ara-A and cytidine bind in totally different ways.
Resumo:
IH NMR studies at 270 MHz on the synthetic alamethicin fragments Z-Aib-Pro-Aib-Ala-Aib-Ala-OMe (1-6), Boc-Gln-Aib-Val-Aib-Gly-Leu-Aib-OMe (7-1 3), Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-16), and Boc-Gly-Leu- Aib-Pro-Val-Aib-OMe (1 1-16) have been carried out in CDC13 and (CD3)2S0. The intramolecularly hydrogen bonded amide hydrogens in these peptides have been delineated by using solvent titration experiments and temperature coefficientsof NH chemical shifts in (CD3)+30. All the peptides adopt highly folded structures, characterized by intramolecular 4 - 1 hydrogen bonds. The 1-6 fragment adopts a 310 helical conformation with four hydrogen bonds, in agreement with earlier studies (Rao, Ch. P., Nagaraj, R., Rao, C. N. R., & Balaram, P. (1980) Biochemistry 19, 425-4311. The 7-13
Resumo:
Linear optimization model was used to calculate seven wood procurement scenarios for years 1990, 2000 and 2010. Productivity and cost functions for seven cutting, five terrain transport, three long distance transport and various work supervision and scaling methods were calculated from available work study reports. All method's base on Nordic cut to length system. Finland was divided in three parts for description of harvesting conditions. Twenty imaginary wood processing points and their wood procurement areas were created for these areas. The procurement systems, which consist of the harvesting conditions and work productivity functions, were described as a simulation model. In the LP-model the wood procurement system has to fulfil the volume and wood assortment requirements of processing points by minimizing the procurement cost. The model consists of 862 variables and 560 restrictions. Results show that it is economical to increase the mechanical work in harvesting. Cost increment alternatives effect only little on profitability of manual work. The areas of later thinnings and seed tree- and shelter wood cuttings increase on cost of first thinnings. In mechanized work one method, 10-tonne one grip harvester and forwarder, is gaining advantage among other methods. Working hours of forwarder are decreasing opposite to the harvester. There is only little need to increase the number of harvesters and trucks or their drivers from today's level. Quite large fluctuations in level of procurement and cost can be handled by constant number of machines, by alternating the number of season workers and by driving machines in two shifts. It is possible, if some environmental problems of large scale summer time harvesting can be solved.
Resumo:
Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of C-13 and H-1 chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their C-13 chemical shifts with that of the neighboring, directly attached, C-13 nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D H-1-TOCSY-HCCH and (c) (4,3)D C-13-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.
Resumo:
Hollow atoms in which the K shell is empty while the outer shells are populated allow studying a variety of important and unusual properties of atoms. The diagram x-ray emission lines of such atoms, the K-h alpha(1,2) hypersatellites (HSs), were measured for the 3d transition metals, Z=23-30, with a high energy resolution using photoexcitation by monochromatized synchrotron radiation. Good agreement with ab initio relativistic multiconfigurational Dirac-Fock calculations was found. The measured HS intensity variation with the excitation energy yields accurate values for the excitation thresholds, excludes contributions from shake-up processes, and indicates domination near threshold of a nonshake process. The Z variation of the HS shifts from the diagram line K alpha(1,2), the K-h alpha(1)-K-h alpha(2) splitting, and the K-h alpha(1)/K-h alpha(2) intensity ratio, derived from the measurements, are also discussed with a particular emphasis on the QED corrections and Breit interaction.