950 resultados para ship emission
Resumo:
The European Union’s Emission Trading Scheme (ETS), proposed by the Commission in 2001, entered into force in 2005. It was the flagship instrument of an ambitious policy aiming to reduce the emission of greenhouse gasses in the EU by making emission allowances a freely tradable ‘financial commodity’. However, in recent years, the cracks in the system have begun to show as the price of these CO2 emission allowances has dropped. In this Policy Brief, Jørgen Knud Henningsen argues that the envisaged ETS reform may not be enough to address the system’s shortcomings, and that there should be a more open discussion about its potential if it is to contribute to the EU’s goal of a largely de-carbonised economy by 2050.
Resumo:
The drop in Ukraine’s GDP by nearly 18% in the first three months of 2015 (versus the corresponding period in 2014) has confirmed the decline of the country’s economy. Over the last 14 months, the Ukrainian currency was subject to an almost threefold devaluation against the US dollar, and in April 2015 the inflation rate was 61% (year-on-year), which exacerbated the impoverishment of the general public and weakened domestic demand. The main reason behind the crisis has been the destruction of heavy industry and infrastructure in the war-torn Donbas region, over which Kyiv no longer has control, as well as a sharp decline in foreign trade (by 24% in 2014 and by 34% in the first quarter of 2015), recorded primarily in trading volume with Ukraine’s major trade partner, i.e. Russia (a drop of 43%). The conflict has also had a negative impact on the production figures for the two key sectors of the Ukrainian economy: agriculture and metallurgy, which account for approximately 50% of Ukrainian exports. The government’s response to the crisis has primarily been a reduction in the costs of financing the Donbas and an increase in the financial burden placed on the citizens and companies of Ukraine. No radical reforms which would encompass the entire system, including anti-corruption reforms, have been carried out to stop the embezzlement of state funds and to facilitate business activity. The reasons for not initiating reforms have included the lack of will to launch them, Ukraine’s traditionally slow pace of bureaucratic action and growing dissonance among the parties making up the parliamentary coalition. The few positive changes, including marketisation of energy prices and sustaining budgetary discipline (in the first quarter of 2015, budgetary revenues grew by 25%, though partly as a result of currency devaluation), are being carried out under pressure from the International Monetary Fund, which is making the payment of further loan instalments to the tune of US$ 17.5 billion conditional upon reforms. Despite assistance granted by Western institutional donors and by individual states, the risk of Ukraine going bankrupt remains real. The issue of restructuring foreign debt worth US$ 15 billion has not been resolved, as foreign creditors who hold Ukrainian bonds have not consented to any partial cancellation of the debt. Whether Ukraine’s public finances can be stabilised will depend mainly on the situation in the east of the country and on the possible renewal of military action. It seems that the only way to rescue Ukraine’s public finances from deteriorating further is to continue to ‘freeze’ the conflict, to gradually implement wide-ranging reforms and to reach a consensus in negotiations with lenders.
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
Resumo:
Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH₄) from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI) as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH₄ emissions to be 196 ± 18 Gg yr⁻¹ for the year 2013 (1σ uncertainty). This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr⁻¹ as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter), and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH₄ source categories in Switzerland are agriculture (78 %), waste handling (15 %) and natural gas distribution and combustion (6 %). The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH₄ emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH₄ in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr⁻¹ reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr⁻¹ implied by the EDGARv4.2 inventory for this sector. Increased CH₄ emissions (up to 30 % compared to the prior) were deduced for the north-eastern parts of Switzerland. This feature was common to most sensitivity inversions, which is a strong indicator that it is a real feature and not an artefact of the transport model and the inversion system. However, it was not possible to assign an unambiguous source process to the region. The observations of the CarboCount-CH network provided invaluable and independent information for the validation of the national bottom-up inventory. Similar systems need to be sustained to provide independent monitoring of future climate agreements.
Resumo:
Studies by optical microscopy, x-ray diffraction, and electron probe techniques of ferromanganese concretions from three Canadian lakes reveal chemical banding of amorphous hydrated iron and manganese oxides. The average ratio of iron to manganese in concretions from these lakes varies from 0.43 to 2.56. The concentrations of cobalt, nickel, copper, and lead are one to two orders of magnitude below those reported for oceanic ferromanganese concretions.