972 resultados para share-based payments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Swarm based Cooperation Mechanism for scheduling optimization. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to support decision making in agile manufacturing environments. Agents coordinate their actions automatically without human supervision considering a common objective – global scheduling solution taking advantages from collective behavior of species through implicit and explicit cooperation. The performance of the cooperation mechanism will be evaluated consider implicit cooperation at first stage through ACS, PSO and ABC algorithms and explicit through cooperation mechanism application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operation of power systems in a Smart Grid (SG) context brings new opportunities to consumers as active players, in order to fully reach the SG advantages. In this context, concepts as smart homes or smart buildings are promising approaches to perform the optimization of the consumption, while reducing the electricity costs. This paper proposes an intelligent methodology to support the consumption optimization of an industrial consumer, which has a Combined Heat and Power (CHP) facility. A SCADA (Supervisory Control and Data Acquisition) system developed by the authors is used to support the implementation of the proposed methodology. An optimization algorithm implemented in the system in order to perform the determination of the optimal consumption and CHP levels in each instant, according to the Demand Response (DR) opportunities. The paper includes a case study with several scenarios of consumption and heat demand in the context of a DR event which specifies a maximum demand level for the consumer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bifunctional transformation of n-hexane was carried out over Pt/MCM-22 based catalysts. MCM-22 was synthesized and submitted to ion exchange with rare earth nitrate solutions of La, Nd and Yb, followed by Pt introduction. Three different methods were used to introduce about 1 wt% of Pt in the zeolite: ion exchange, incipient wetness impregnation and mechanical mixture with Pt/Al(2)O(3). The bifunctional catalysts were characterized by transmission electron microscopy and by the model reaction of toluene hydrogenation. These experiments showed that, in the ion exchanged sample, Pt is located both within the inner micropores and on the outer surface, whereas in the impregnated one, the metal is essentially located on the outer surface under the form of large particles. The presence of RE elements increases the hydrogenating activity of Pt/MCM-22 since the location of these species at the vicinity of metal particles causes modification on its electronic properties. Whatever the mode of Pt introduction, a fast initial decrease in conversion is observed for n-hexane transformation, followed by a plateau related to the occurrence of the catalytic transformations at the hemicages located at the outer surface of the crystals. The effect of rare earth elements on the hydrogenating function leads to a lower selectivity in dibranched isomers and increased amounts of light products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate fluoride and aluminum concentration in herbal, black, ready-to-drink, and imported teas available in Brazil considering the risks fluoride and aluminum pose to oral and general health, respectively. METHODS: One-hundred and seventy-seven samples of herbal and black tea, 11 types of imported tea and 21 samples of ready-to-drink tea were divided into four groups: I-herbal tea; II-Brazilian black tea (Camellia sinensis); III-imported tea (Camellia sinensis); IV-ready-to-drink tea-based beverages. Fluoride and aluminum were analyzed using ion-selective electrode and atomic absorption, respectively. RESULTS: Fluoride and aluminum levels in herbal teas were very low, but high amounts were found in black and ready-to-drink teas. Aluminum found in all samples analyzed can be considered safe to general health. However, considering 0.07 mg F/kg/day as the upper limit of fluoride intake with regard to undesirable dental fluorosis, some teas exceed the daily intake limit for children. CONCLUSIONS: Brazilian and imported teas made from Camellia sinensis as well as some tea-based beverages are sources of significant amounts of fluoride, and their intake may increase the risk of developing dental fluorosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a novel approach to explore DNA nucleotide sequence data, aiming to produce high-level categorical and structural information about the underlying chromosomes, genomes and species. The article starts by analyzing chromosomal data through histograms using fixed length DNA sequences. After creating the DNA-related histograms, a correlation between pairs of histograms is computed, producing a global correlation matrix. These data are then used as input to several data processing methods for information extraction and tabular/graphical output generation. A set of 18 species is processed and the extensive results reveal that the proposed method is able to generate significant and diversified outputs, in good accordance with current scientific knowledge in domains such as genomics and phylogenetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congestion management of transmission power systems has achieve high relevance in competitive environments, which require an adequate approach both in technical and economic terms. This paper proposes a new methodology for congestion management and transmission tariff determination in deregulated electricity markets. The congestion management methodology is based on a reformulated optimal power flow, whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the transactions resulting from market operation. The proposed transmission tariffs consider the physical impact caused by each market agents in the transmission network. The final tariff considers existing system costs and also costs due to the initial congestion situation and losses. This paper includes a case study for the 118 bus IEEE test case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban Computing (UrC) provides users with the situation-proper information by considering context of users, devices, and social and physical environment in urban life. With social network services, UrC makes it possible for people with common interests to organize a virtual-society through exchange of context information among them. In these cases, people and personal devices are vulnerable to fake and misleading context information which is transferred from unauthorized and unauthenticated servers by attackers. So called smart devices which run automatically on some context events are more vulnerable if they are not prepared for attacks. In this paper, we illustrate some UrC service scenarios, and show important context information, possible threats, protection method, and secure context management for people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM provides several dynamic strategies for agents’ behavior. This paper presents a method that aims to provide market players with strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible bids. These bids are defined accordingly to the cost function that each producer presents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.