986 resultados para semi empirical calculations
Resumo:
This study examined the spatial and temporal variations of six important parameters of the salt accumulation process in water samples collected along section urban of Contas River. The Na+, K+, Ca2+ and Mg2+ concentrations were determined by FAAS. The conductivity, total dissolved solids, Na+ and Ca2+ presented the largest seasonal and spatial variations in the urban area demonstrated that are appropriate indicators of urban contamination. The readily soluble salts in drainage urban, contribute for the degradation of the water of rivers located in semi-arid zones.
Resumo:
Arkit: A4 [B2].
Resumo:
This study represents an integrated approach towards understanding the electronic and structural aspects of 2-benzylamino-1,4-naphthalenedione, a representative 2-amino-napfthoquinone. To this end, theoretical calculations performed at the B3PW91/6-31+G(d) level of density functional theory, electrochemical and X-ray structural investigation were employed. Two intramolecular H-bonds and other two intermolecular H-bonds were observed, including non-classical interactions. Cyclic voltammogram (CV) and differential pulse voltammetry (DPV) show two pairs of peaks, being each one a monoelectronic process.
Resumo:
A neural network procedure to solve inverse chemical kinetic problems is discussed in this work. Rate constants are calculated from the product concentration of an irreversible consecutive reaction: the hydrogenation of Citral molecule, a process with industrial interest. Simulated and experimental data are considered. Errors in the simulated data, up to 7% in the concentrations, were assumed to investigate the robustness of the inverse procedure. Also, the proposed method is compared with two common methods in nonlinear analysis; the Simplex and Levenberg-Marquardt approaches. In all situations investigated, the neural network approach was numerically stable and robust with respect to deviations in the initial conditions or experimental noises.
Resumo:
Genetic algorithm and partial least square (GA-PLS) and kernel PLS (GA-KPLS) techniques were used to investigate the correlation between retention indices (RI) and descriptors for 117 diverse compounds in essential oils from 5 Pimpinella species gathered from central Turkey which were obtained by gas chromatography and gas chromatography-mass spectrometry. The square correlation coefficient leave-group-out cross validation (LGO-CV) (Q²) between experimental and predicted RI for training set by GA-PLS and GA-KPLS was 0.940 and 0.963, respectively. This indicates that GA-KPLS can be used as an alternative modeling tool for quantitative structure-retention relationship (QSRR) studies.
Resumo:
Density Functional Theory (DFT) calculations on the interactions of small atoms (H, C, O, and S) on first-row transition metal clusters were performed. The results show that the adsorption site may vary between the metal surface and the edge of the cluster. The adsorption energies, adatom-nearest neighbor and adatom-metal plane distances were also determined. Finally, the authors present a discussion about the performance of these metals as anodes on solid oxide fuel cells. The results obtained agree with empirical data, indicating that the theoretical model used is adequate
Resumo:
Hydrogen bond energies of fifteen dimers were calculated using the large basis set 6-311++G(3df,3pd), at Hartree-Fock (HF) level including Møller-Plesset (MP2) calculations. The procedure for obtaining such energies were based on the dimer's energy rise provoked by increasing in intermolecular distance of the system component units. Deviations from a strictly linear hydrogen bond were investigated and rotational barriers were also computed allowing the calculation of the second order attractive interactions. In order to provide a more objective definition of hydrogen bond, a lower energy limit was proposed in place of the merely empirical parameters employed in the classical definition
Resumo:
In the last ten years, the interest in natural and semi-synthetic cucurbitacin derivatives has increased, primarily due their cytotoxic and anti-tumoral activities. However, the isolation of glycosylated cucurbitacins has been difficult due the presence of β-glucosidase enzyme. With the aim of obtaining new glycosylated derivatives, the glycosylation of dihydrocucurbitacin B under Köenigs-Knorr and imidate reaction conditions was studied. Novel glycoside derivatives 16-(1,2-orthoacetate-3,4,6-tri-O-acetyl-α-D-glucopyranosyl)-dihydrocucurbitacin B (2), 2-O-β-D-2,3,4,6-tetra-O-acetyl-galactopyranosyl dihydrocucurbitacin B (3) and 2-O-β-D-galactopyranosyl dihydrocucurbitacin B (4) were synthesized for the first time in 17% (2 and 3) and 48% (4) yields.