995 resultados para scheduling sequence
Resumo:
We report the identification of the promoter region of the Escherichia coli O7-specific lipopolysaccharide (LPS) gene cluster (wbEcO7). Typical -10 and -35 sequences were found to be located in the intervening region between galF and rlmB, the first gene of the wbEcO7 cluster. Data from RNase protection experiments revealed the existence of an untranslated leader mRNA segment of 173 bp, including the JUMPStart and two ops sequences. We characterized the structure of this leader mRNA by using the program Mfold and a combination of nested and internal deletions transcriptionally fused to a promoterless lac operon. Our results indicated that the leader mRNA may fold into a series of complex stem-loop structures, one of which includes the JUMPStart element. We have also found that one of the ops sequences resides on the predicted stem and the other resides on the loop region, and we confirmed that these sequences are essential for the RfaH-mediated regulation of the O polysaccharide cluster. A very similar stem-loop structure could be predicted in the promoter region of the LPS core operon encoding the waaQGPSBIJYZK genes. We observed another predicted stem-loop, located immediately downstream from the wbEcO7 transcription initiation site, which appeared to be involved in premature termination of transcription. This putative stem-loop is common to many other O polysaccharide gene clusters but is not present in core oligosaccharide genes. wbEcO7-lac transcriptional fusions in single copy numbers were also used to determine the effects of various environmental cues in the transcriptional regulation of O polysaccharide synthesis. No effects were detected with temperature, osmolarity, Mg2+ concentration, and drugs inducing changes in DNA supercoiling. We therefore conclude that the wbEcO7 promoter activity may be constitutive and that regulation takes place at the level of elongation of the mRNA in a RfaH-mediated manner.
Resumo:
The O7-specific lipopolysaccharide (LPS) in strains of Escherichia coli consists of a repeating unit made of galactose, mannose, rhamnose, 4-acetamido-2,6-dideoxyglucose, and N-acetylglucosamine. We have recently cloned and characterized genetically the O7-specific LPS biosynthesis region (rfbEcO7) of the E. coli O7:K1 strain VW187 (C. L. Marolda, J. Welsh, L. Dafoe, and M. A. Valvano, J. Bacteriol. 172:3590-3599, 1990). In this study, we localized the gnd gene encoding gluconate-6-phosphate dehydrogenase at one end of the rfbEcO7 gene cluster and sequenced that end of the cluster. Three open reading frames (ORF) encoding polypeptides of 275, 464, and 453 amino acids were identified upstream of gndEcO7, all transcribed toward the gnd gene. ORF275 had 45% similarity at the protein level with ORF16.5, which occupies a similar position in the Salmonella enterica LT2 rfb region, and presumably encodes a nucleotide sugar transferase. The polypeptides encoded by ORFs 464 and 453 were expressed under the control of the ptac promoter and visualized in Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels and by maxicell analysis. ORF464 expressed GDP-mannose pyrophosphorylase and ORF453 encoded a phosphomannomutase, the enzymes for the biosynthesis pathway of GDP-mannose, one of the nucleotide sugar precursors for the formation of the O7 repeating unit. They were designated rfbMEcO7 and rfbKEcO7, respectively. The RfbMEcO7 polypeptide was homologous to the corresponding protein in S. enterica LT2, XanB of Xanthomonas campestris, and AlgA of Pseudomonas aeruginosa, all GDP-mannose pyrophosphorylases. RfbKEcO7 was very similar to CpsG of S. enterica LT2, an enzyme presumably involved in the biosynthesis of the capsular polysaccharide colanic acid, but quite different from the corresponding RfbK protein of S. enterica LT2.
Resumo:
Single nucleotide polymorphisms within a sequence of a gene associated with prostate cancer were identified using oligodeoxynucleotide probe sequences bearing internal anthracene fluorophores proximal to the SNP site. Depending upon the nature of the synthesised target sequences, probe-target duplex formation could lead to enhanced or attenuated fluorescence emission from the anthracene, enabling detection of a proximal base-pair as either matching or mismatching. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fluorescence yields are reported for 3lnl' Rydberg series members in He-like ions of N, O and Ne. Results are presented for singlet series members with n values between 3 and 9, i.e. up to the region of overlap with the states belonging to the 4l4l' manifold in these atoms. This data is required, for example, for the interpretation of charge-exchange experiments involving bare N, O and Ne nuclei. Fluorescence yields, averaged over all 3lnl' singlet states, larger than 50% are obtained from about n = 7.
Resumo:
Background: Evidence suggests that in prokaryotes sequence-dependent transcriptional pauses a?ect the dynamics of transcription and translation, as well as of small genetic circuits. So far, a few pause-prone sequences have been identi?ed from in vitro measurements of transcription elongation kinetics.
Results: Using a stochastic model of gene expression at the nucleotide and codon levels with realistic parameter values, we investigate three di?erent but related questions and present statistical methods for their analysis. First, we show that information from in vivo RNA and protein temporal numbers is su?cient to discriminate between models with and without a pause site in their coding sequence. Second, we demonstrate that it is possible to separate a large variety of models from each other with pauses of various durations and locations in the template by means of a hierarchical clustering and a random forest classi?er. Third, we introduce an approximate likelihood function that allows to estimate the location of a pause site.
Conclusions: This method can aid in detecting unknown pause-prone sequences from temporal measurements of RNA and protein numbers at a genome-wide scale and thus elucidate possible roles that these sequences play in the dynamics of genetic networks and phenotype.
Resumo:
Androgen withdrawal induces hypoxia in androgen-sensitive tissue; this is important as in the tumour microenvironment hypoxia is known to drive malignant progression. This study examined the time-dependent effect of androgen deprivation therapy (ADT) on tumour oxygenation and investigated the role of ADT-induced hypoxia on malignant progression in prostate tumours. LNCaP xenografted tumours were treated with anti-androgens and tumour oxygenation measured. Dorsal skin fold chambers (DSF) were used to image tumour vasculature in vivo. Quantitative PCR (QPCR) identified differential gene expression following treatment with bicalutamide. Bicalutamide and vehicle-only treated tumours were re-established in vitro and invasion and sensitivity to docetaxel were measured. Tumour growth delay was calculated following treatment with bicalutamide combined with the bioreductive drug AQ4N. Tumour oxygenation measurements showed a precipitate decrease following initiation of ADT. A clinically relevant dose of bicalutamide (2mg/kg/day) decreased tumour oxygenation by 45% within 24h, reaching a nadir of 0.09% oxygen (0.67±0.06 mmHg) by day 7; this persisted until day 14 when it increased up to day 28. Using DSF chambers, LNCaP tumours treated with bicalutamide showed loss of small vessels at days 7 and 14 with revascularization occurring by day 21. QPCR showed changes in gene expression consistent with the vascular changes and malignant progression. Cells from bicalutamide-treated tumours were more malignant than vehicle-treated controls. Combining bicalutamide with AQ4N (50mg/kg; single dose) caused greater tumour growth delay than bicalutamide alone. This study shows that bicalutamide-induced hypoxia selects for cells that show malignant progression; targeting hypoxic cells may provide greater clinical benefit.
Resumo:
Massively parallel networks of highly efficient, high performance Single Instruction Multiple Data (SIMD) processors have been shown to enable FPGA-based implementation of real-time signal processing applications with performance and
cost comparable to dedicated hardware architectures. This is achieved by exploiting simple datapath units with deep processing pipelines. However, these architectures are highly susceptible to pipeline bubbles resulting from data and control hazards; the only way to mitigate against these is manual interleaving of
application tasks on each datapath, since no suitable automated interleaving approach exists. In this paper we describe a new automated integrated mapping/scheduling approach to map algorithm tasks to processors and a new low-complexity list scheduling technique to generate the interleaved schedules. When applied to a spatial Fixed-Complexity Sphere Decoding (FSD) detector
for next-generation Multiple-Input Multiple-Output (MIMO) systems, the resulting schedules achieve real-time performance for IEEE 802.11n systems on a network of 16-way SIMD processors on FPGA, enable better performance/complexity balance than current approaches and produce results comparable to handcrafted implementations.
Resumo:
Observational studies suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the risk of esophageal adenocarcinoma, but it is not known at what stage they may act in the esophageal inflammation-metaplasia-adenocarcinoma sequence. In an all-Ireland case-control study, we investigated the relationship between the use of NSAIDs and risk of reflux esophagitis, Barrett's esophagus, and esophageal adenocarcinoma. Patients with esophageal adenocarcinoma, long-segment Barrett's esophagus and population controls were recruited from throughout Ireland. Esophagitis patients were recruited from Northern Ireland only. Data were collected on known and potential risk factors for esophageal adenocarcinoma and on the use of NSAIDs, including aspirin, at least 1 year before interview. Associations between use of NSAIDs and the stages of the esophageal inflammation-metaplasia-adenocarcinoma sequence were estimated by multiple logistic regression. In total, 230 reflux esophagitis, 224 Barrett's esophagus, and 227 esophageal adenocarcinoma and 260 population controls were recruited. Use of aspirin and NSAIDs was associated with a reduced risk of Barrett's esophagus [odds ratio [OR; 95% confidence interval (95% CI)], 0.53 (0.31-0.90) and 0.40 (0.19-0.81), respectively] and esophageal adenocarcinoma [OR (95% CI), 0.57 (0.36-0.93) and 0.58 (0.31-1.08), respectively]. Barrett's esophagus and esophageal adenocarcinoma patients were less likely than controls to have used NSAIDs. Selection or recall bias may explain these results and the results of previous observational studies indicating a protective effect of NSAIDs against esophageal adenocarcinoma. If NSAIDs have a true protective effect on the esophageal inflammation-metaplasia-adenocarcinoma sequence, they may act early in the sequence.
Resumo:
Nicastrin (NCSTN) is a component of the ?-secretase complex and therefore potentially a candidate risk gene for Alzheimer's disease. Here, we have developed a novel functional genomics methodology to express common locus haplotypes to assess functional differences. DNA recombination was used to engineer 5 bacterial artificial chromosomes (BACs) to each express a different haplotype of the NCSTN locus. Each NCSTN-BAC was delivered to knockout nicastrin (Ncstn(-/-)) cells and clonal NCSTN-BAC(+)/Ncstn(-/-) cell lines were created for functional analyses. We showed that all NCSTN-BAC haplotypes expressed nicastrin protein and rescued ?-secretase activity and amyloid beta (Aß) production in NCSTN-BAC(+)/Ncstn(-/-) lines. We then showed that genetic variation at the NCSTN locus affected alternative splicing in human postmortem brain tissue. However, there was no robust functional difference between clonal cell lines rescued by each of the 5 different haplotypes. Finally, there was no statistically significant association of NCSTN with disease risk in the 4 cohorts. We therefore conclude that it is unlikely that common variation at the NCSTN locus is a risk factor for Alzheimer's disease.
Resumo:
The Gram-positive bacterium Propionibacterium acnes is a member of the normal human skin microbiota and is associated with various infections and clinical conditions. There is tentative evidence to suggest that certain lineages may be associated with disease and others with health. We recently described a multilocus sequence typing scheme (MLST) for P. acnes based on seven housekeeping genes (http://pubmlst.org/pacnes). We now describe an expanded eight gene version based on six housekeeping genes and two ‘putative virulence’ genes (eMLST) that provides improved high resolution
typing (91eSTs from 285 isolates), and generates phylogenies congruent with those based on whole genome analysis. When compared with the nine gene MLST scheme developed at the University of Bath, UK, and utilised by researchers at Aarhus University, Denmark, the eMLST method offers greater resolution. Using the scheme, we examined 208 isolates from disparate clinical sources, and 77 isolates from healthy skin. Acne was predominately associated with type IA1 clonal complexes CC1, CC3 and CC4; with eST1 and eST3 lineages being highly represented. In contrast, type IA2 strains were recovered at a rate similar to type IB and II organisms. Ophthalmic infections were predominately associated with type IA1 and IA2 strains, while type IB and II were more frequently recovered from soft tissue and retrieved medical devices. Strains with rRNA mutations conferring resistance to antibiotics used in acne treatment were dominated by eST3, with some evidence for intercontinental spread. In contrast, despite its high association with acne, only a small number of resistant CC1 eSTs were identified. A number of eSTs were only recovered from healthy skin, particularly eSTs representing CC72 (type II) and CC77 (type III). Collectively our data lends support to the view that pathogenic versus truly commensal lineages of P. acnes may exist. This is likely to have important therapeutic and diagnostic implications.
Resumo:
We report the genome sequence of Klebsiella pneumoniae subsp. pneumoniae Ecl8, a spontaneous streptomycin-resistant mutant of strain ECL4, derived from NCIB 418. K. pneumoniae Ecl8 has been shown to be genetically tractable for targeted gene deletion strategies and so provides a platform for in-depth analyses of this species.
Resumo:
This communication reports on the synthesis and biophysical, biological and SAR studies of a small library of new anti-HIV aptamers based on the tetra-end-linked G-quadruplex structure. The new aptamers showed EC(50) values against HIV-1 in the range of 0.04-0.15 µM as well as affinities for the HIV-1 gp120 envelope in the same order of magnitude