979 resultados para saturated NaCl solution
Resumo:
The interactions of sodium dodecyl sulfate (SDS) with poly(ethylene oxide)/poly(alkylene oxide) (E/A) block copolymers are explored in this study: With respect to the specific compositional characteristics of the copolymer, introduction of SDS can induce fundamentally different effects to the self-assembly behavior of E/A copolymer solutions. In the case of the E18B10-SDS system (E = poly(ethylene oxide) and B = poly(butylene oxide)) development of large surfactant-polymer aggregates was observed. In the case of B20E610-SDS, B12E227B12-SDS, E40B10E40-SDS, E19P43E19-SDS (P = poly(propylene oxide)), the formation of smaller particles compared to pure polymeric micelles points to micellar suppression induced by the ionic surfactant. This effect can be ascribed to a physical binding between the hydrophobic block of unassociated macromolecules and the non-polar tail of the surfactant. Analysis of critical micelle concentrations (cmc*) of polymer-surfactant aqueous solutions within the framework of regular solution theory for binary surfactants revealed negative deviations from ideal behavior for E40B10E40-SDS and E19P43E19-SDS, but positive deviations for E18B10-SDS. Ultrasonic studies performed for the E19P43E19-SDS system enabled the identification of three distinct regions, corresponding to three main steps of the complexation; SDS absorption to the hydrophobic backbone of polymer, development of polymer-surfactant complexes and gradual breakdown of the mixed aggregates. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Critical micelle concentrations (cmc) of aqueous solutions of poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) were determined at several temperatures by surface tensiometry. Below the lower critical solution temperature (LCST), the low Delta(mic) H-0 determined can be assigned to the PMMA block being tightly coiled in the dispersed molecular state, so that the unfavorable interactions of hydrophobic entities with water are minimized. Above the LCST the cmc value was found to increase; an anomalous behavior that can be directly related to the micelle-globule transition of the hydrophilic block. Interestingly, above the LCST the surface tension of relatively concentrated solutions was found to depend weakly on temperature not following the usual strong decrease with temperature expected for aqueous solutions. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Biologically-inspired peptide sequences have been explored as auxiliaries to mediate self-assembly of synthetic macromolecules into hierarchically organized solution and solid state nanostructures. Peptide sequences inspired by the coiled coil motif and "switch" peptides, which can adopt both amphiphilic alpha-helical and beta-strand conformations, were conjugated to poly(ethylene glycol) (PEG). The solution and solid state self-assembly of these materials was investigated using a variety of spectroscopic, scattering and microscopic techniques. These experiments revealed that the folding and organization properties of the peptide sequences are retained upon conjugation of PEG and that they provide the driving force for the formation of the different nanoscale structures which were observed. The possibility of using defined peptide sequences to direct structure formation of synthetic polymers together with the potential of peptide sequences to induce a specific biological response offers interesting prospects for the development of novel self-assembled and biologically active materials.
Resumo:
The separation by solvent extraction of Am-241(III) from Eu-152(III), in 1 M NaNO3 weakly acidic (pH 4) aqueous solutions, into dilute (ca. 10(-2) M) solutions of triazinylbipyridine derivatives (diethylhemi-BTP or di(benzyloxyphenyl) hemi-BTP) and chlorinated cobalt dicarbollide (COSAN) in 1-octanol or nitrobenzene has been studied. The N-tridentate heterocyclic ligands, which are selective for Am(III) over Eu(III), secured efficient separation of the two metal ions, while COSAN, strongly hydrophobic and fully dissociated in polar diluents, enhanced the extraction of the metal ions by ion-pair formation. Molecular interactions between the two co-extractants, observed at higher concentrations, led to the precipitation of their 1: 1 molecular adduct. In spite of that, efficient separations of Am and Eu ions were attained, with high separation factors, SFAm/Eu of 40 and even 60, provided the concentration of hemi-BTP was significantly greater than that of COSAN. Excess COSAN concentrations caused an antagonistic effect, decreasing both the distribution ratio of the metal ions and their separation factor.
Resumo:
A scheme to describe SDS-lysozyme complex formation has been proposed on the basis of isothermal titration calorimetry (ITC) and FTIR spectroscopy data. ITC isotherms are convoluted and reveal a marked effect of both SDS and lysozyme concentration on the stoichiometry of the SDS-lysozyme complex. The binding isotherms have been described with the aid of FTIR spectroscopy in terms of changes in the lysozyme structure and the nature of the SDS binding. At low SDS concentrations, ITC isotherms feature an exothermic region that corresponds to specific electrostatic binding of SDS to positively charged amino acid residues on the lysozyme surface. This leads to charge neutralization of the complex and precipitation. The number of SDS molecules that bind specifically to lysozyme is approximately 8, as determined from our ITC isotherms, and is independent of lysozyme solution concentration. At high SDS concentrations, hydrophobic cooperative association dominates the binding process. Saturated binding stoichiometries as a molar ratio of SDS per molecule of lysozyme range from 220: 1 to 80: 1, depending on the lysozyme solution concentration. A limiting value of 78: 1 has been calculated for lysozyme solution concentrations above 0.25 mM.
Resumo:
[VIVO(acac)(2)] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [(VO)-O-V(L-1)(OCH3)(py)] (1) and [(VO)-O-V(L-2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [(VO)-O-V(L-3/L-4)(OCH3)](2) complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their H-1 NMR spectra. These quaternary VO3+ complexes are converted to the corresponding V2O34+-complexes simply on refluxing them in acetone and to the VO2+-complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [(VO)-O-V(L)(hq)] complexes in CHCl3. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Dinuclear trioxidic [{VOL}(2)mu-O] (1-4) complexes were synthesized from the reaction of [(VO)-O-IV(acac)(2)] with an equimolar amount of H2L [H2L is the general abbreviation of hydrazone ligands (H2L1-4) derived from the condensation of benzoyl hydrazine with either 2-hydroxyacetophenone or its para substituted derivatives] in acetone or CH2Cl2 or acetonitrile. These V2O3L2 complexes were also obtained from the reaction of VOSO4 with H2L in the presence of two equivalents sodium acetate in aqueous-methanolic (50% V/V) medium and also from the decomposition of [(VO)-O-IV(L)(bipy/phen)] complexes in CH2Cl2 Solution. Black monoclinic crystals of 2 and 4 with C2/c space group were obtained from the reaction of [(VO)-O-IV(acac)(2)], respectively, with H2L2 and H2L4 in acetone in which the respective ligands are bonded meridionally to vanadium in their fully deprotonated enol forms. The V-O bond lengths follow the order: V-O(oxo) < V-O(oxo-bridged) < V-O(phenolate) < V-O(enolate). Complexes (1-4) are diamagnetic exhibiting LMCT transition band near 380 nm in CH2Cl2 solution and they are electroactive displaying a quasi-reversible reduction peak in the 0.14-0.30 V versus SCE region. The and the reduction peak potential (E-p(c)) values show linear relationships with the Hammett constant (sigma) of the substituents in the hydrazone ligands. These dinuclear complexes are converted to the corresponding mononuclear cis dioxo complexes K(H2O)(+)[(VO2)-O-V(L)](-) (5-8) and mixed-ligand [(VO)-O-V(L)(hq)] complexes on reaction, respectively, with two equivalents KOH in methanol and two equivalents 8-hydroxyquinoline (Hhq) in CHCl3. Ascorbic acid reduces the dioxovanadium(V) complexes reversibly under aerobic condition. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Aim: We examined the effect of meat fatty acids on lipid and apolipoprotein concentrations of very low density lipoprotein (VLDL) and chylomicron/chylomicron remnants in lipid fractions with a Svedberg flotation rate (S-f) 60-400 and S-f 20-60. Methods and results: Six healthy middle-aged men received in random order mixed meals enriched with saturated (SFA), polyunsaturated (PUFA) or monounsaturated (MUFA) fatty acids on 3 occasions. VLDL and chylomicron/chylomicron remnants in the lipid fractions were separated by immunoaffinity chromatography against apo B-100. In the S-f 60-400 chylomicron/chylomicron remnants, triacylglycerol and cholesterol concentrations were significantly tower following PUFA compared with SFA and MUFA (P <= 0.05). Apolipoprotein (apo) E responses were significantly higher after SFA in chylomicron/chylomicron remnants and VLDL compared with PUFA and MUFA (P < 0.007). However, apo B responses (particle number) were higher following MUFA than SFA (P = 0.039 for chylomicron/chylomicron remnants). Composition of the chylomicron/chylomicron remnants (expressed per particle) revealed differences in their triacylglycerol and apo E contents; in the Sf 60-400 fraction, SFA-rich chylomicron/chylomicron remnants contained significantly more triacylglycerol than MUFA (P = 0.028), more apo E than PUFA- and MUFA-rich particles (P < 0.05) and in the S-f 20-60 fraction, more apo E than MUFA (P = 0.009). Conclusion: There are specific differences in the composition of chylomicron/ chylomicron remnants formed after saturated compared with unsaturated fatty acid-rich meals which could determine their metabolic fate in the circulation and subsequent atherogenicity. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background: Although there is considerable interest in the postprandial events involved in the absorption of dietary fats and the subsequent metabolism of diet-derived triacylglycerol-rich lipoproteins, little is known about the effects of meal fatty acids on the composition of these particles. Objective: We examined the effect of meal fatty acids on the lipid and apolipoprotein contents of triacylglycerol-rich lipoproteins. Design: Ten normolipidemic men received in random order a mixed meal containing 50 L, of a mixture of palm oil and cocoa butter [rich in saturated fatty acids (SFAs)], safflower oil [n-6 polyunsaturated fatty acids (PUFAs)]. or olive oil [monounsaturated fatty acids (MUFAs)] on 3 occasions. Fasting and postprandial apolipoproteins B-48. B-100, E. C-II, and C-III and lipids (triacylglycerol and cholesterol) were measured in plasma fractions with Svedberg flotation rates (S-f) >400 S-f 60-400, and S-f 20 - 60. Results: Calculation of the composition of the triacylglycerol-rich lipoproteins (expressed per mole of apolipoprotein B) showed notable differences in the lipid and apolipoprotein contents of the SFA-enriched particles in the S-f > 400 and S-f 60-400 fractions. After the SFA meal, triacylglycerol-rich lipoproteins in these fractions showed significantly greater amounts of triacylglycerol and of apolipoproteins C-II (Sf 60-400 fraction only), C-III, and E than were found after the MUFA meal (P < 0.02) and more cholesterol, apolipoprotein C-III (Sf > 400 fraction only), and apolipoprotein E than after the PUFA meal (P < 0.02). Conclusions: Differences in the composition of S-f > 400 and S-f 60-400 triacylglycerol-rich lipoproteins formed after saturated compared with unsaturated fatty acid-rich meals may explain differences in the metabolic handling of dietary fats.
Resumo:
The ability of human postprandial triacylglycerol-rich lipoproteins (TRLs), isolated after meals enriched in saturated fatty acids (SFAs), n-6 PUFAs, and MUFAs, to inhibit the uptake of I-125-labeled LDL by the LDL receptor was investigated in HepG2 cells. Addition of TRLs resulted in a dose-dependent inhibition of heparin-releasable binding, cell-associated radioactivity, and degradation products of I-125-labeled LDL (P < 0.001). SFA-rich Svedberg flotation rate (S-f) 60-400 resulted in significantly greater inhibition of cell-associated radioactivity than PUFA-rich particles (P = 0.016) and total uptake of I-125-labeled LDL compared with PUFA- and MUFA-rich particles (P = 0.02). Normalization of the apolipoprotein (apo)E but not apoC-III content of the TRLs removed the effect of meal fatty acid composition, and addition of an anti-apoE antibody reversed the inhibitory effect of TRLs on the total uptake of I-125-labeled LDL. Real time RT-PCR showed that the SFA-rich Sf 60-400 increased the expression of genes involved in hepatic lipid synthesis (P < 0.05) and decreased the expression of the LDL receptor-related protein 1 compared with MUFAs (P = 0.008). In conclusion, these findings suggest an alternative or additional mechanism whereby acute fat ingestion can influence LDL clearance via competitive apoE-dependent effects of TRL on the LDL receptor.-Jackson, K. G., V. Maitin, D. S. Leake, P. Yaqoob, and C. M. Williams. Saturated fat-induced changes in Sf 60 400 particle composition reduces uptake of LDL by HepG2 cells.
Resumo:
Meal fatty acids have been shown to modulate the size and composition of triacylglycerol (TAG)-rich lipoproteins influencing the magnitude and duration of the postprandial plasma TAG response. As a result there is considerable interest in the origin of these meal fatty-acid induced differences in particle composition. Caco-2 cells were incubated over 4 days with fatty acid mixtures resembling the composition of saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA)-rich meals fed in a previous postprandial study to determine their impact on lipoprotein synthesis and secretion. The MUFA- and PUFA-rich mixtures supported greater intracellular TAG, but not cholesterol accumulation compared with the SFA-rich mixture (P < 0.001). The MUFA-rich mixture promoted significantly greater TAG and cholesterol secretion than the other mixtures and significantly more apolipoprotein B-100 secretion than the PUFA-rich mixture (P < 0.05). Electron microscopy revealed the SFA-rich mixture had led to unfavourable effects on cellular morphology, compared with the unsaturated fatty acid-rich mixtures. Our findings suggest the MUFA-rich mixture, may support the formation of a greater number of TAG-rich lipoproteins, which is consistent with indirect observations from our human study. Our electron micrographs are suggestive that some endocytotic uptake of MUFA-rich taurocholate micelles may promote greater lipoprotein synthesis and secretion in Caco-2 cells.
Resumo:
Synthetic microporous membranes with functional groups covalently attached were used to selectively separate beta-lactoglobulin, BSA, and alpha-lactalbumin from rennet whey. The selectivity and membrane performance of strong (quaternary ammonium) and weak (diethylamine) ion-exchange membranes were studied using breakthrough curves, measurement of binding capacity, and protein composition of the elution fraction to determine the binding behavior of each membrane. When the weak and strong anion exchange membranes were saturated with whey, they were both selective primarily for beta-lactoglobulin with less than 1% of the eluate consisting of alpha-lactalbumin or BSA. The binding capacity of a pure alpha-lactoglobulin solution was in excess of 1.5 mg/cm(2) of membrane. This binding capacity was reduced to approximately 1.2 mg/cm(2) when using a rennet whey solution (pH 6.4). This reduction in protein binding capacity can be explained by both the competitive effects of other whey proteins and the effect of ions present in whey. Using binary solution breakthrough curves and rennet whey breakthrough curves, it was shown that alpha-lactalbumin and BSA were displaced from the strong and weak anion exchange membranes by beta-lactoglobulin. Finally, the effect of ionic strength on the binding capacity of individual proteins for each membrane was determined by comparing model protein solutions in milk permeate (pH 6.4) and a 10 mM sodium phosphate buffer (pH 6.4). Binding capacities of beta-lactoglobulin, alpha-lactalbumin, and BSA in milk permeate were reduced by as much as 50%. This reduction in capacity coupled with the low binding capacity of current ion exchange membranes are 2 serious considerations for selectively separating complex and concentrated protein solutions.
Resumo:
Background: Progression of the metabolic syndrome (MetS) is determined by genetic and environmental factors. Gene-environment interactions may be important in modulating the susceptibility to the development of MetS traits. Objective: Gene-nutrient interactions were examined in MetS subjects to determine interactions between single nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ) and its receptors (ADIPOR1 and ADIPOR2) and plasma fatty acid composition and their effects on MetS characteristics. Design: Plasma fatty acid composition, insulin sensitivity, plasma adiponectin and lipid concentrations, and ADIPOQ, ADIPOR1, and ADIPOR2 SNP genotypes were determined in a cross-sectional analysis of 451 subjects with the MetS who participated in the LIPGENE (Diet, Genomics, and the Metabolic Syndrome: an Integrated Nutrition, Agro-food, Social, and Economic Analysis) dietary intervention study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX (SUpplementation en VItamines et Mineraux AntioXydants) case-control study (http://www.ucd.ie/lipgene). Results: Single SNP effects were detected in the cohort. Triacylglycerols, nonesterified fatty acids, and waist circumference were significantly different between genotypes for 2 SNPs (rs266729 in ADIPOQ and rs10920533 in ADIPOR1). Minor allele homozygotes for both of these SNPs were identified as having degrees of insulin resistance, as measured by the homeostasis model assessment of insulin resistance, that were highly responsive to differences in plasma saturated fatty acids (SFAs). The SFA-dependent association between ADIPOR1 rs10920533 and insulin resistance was replicated in cases with MetS from a separate independent study, which was an association not present in controls. Conclusions: A reduction in plasma SFAs could be expected to lower insulin resistance in MetS subjects who are minor allele carriers of rs266729 in ADIPOQ and rs10920533 in ADIPOR1. Personalized dietary advice to decrease SFA consumption in these individuals may be recommended as a possible therapeutic measure to improve insulin sensitivity. This trial was registered at clinicaltrials.
Resumo:
The mathematical models that describe the immersion-frying period and the post-frying cooling period of an infinite slab or an infinite cylinder were solved and tested. Results were successfully compared with those found in the literature or obtained experimentally, and were discussed in terms of the hypotheses and simplifications made. The models were used as the basis of a sensitivity analysis. Simulations showed that a decrease in slab thickness and core heat capacity resulted in faster crust development. On the other hand, an increase in oil temperature and boiling heat transfer coefficient between the oil and the surface of the food accelerated crust formation. The model for oil absorption during cooling was analysed using the tested post-frying cooling equation to determine the moment in which a positive pressure driving force, allowing oil suction within the pore, originated. It was found that as crust layer thickness, pore radius and ambient temperature decreased so did the time needed to start the absorption. On the other hand, as the effective convective heat transfer coefficient between the air and the surface of the slab increased the required cooling time decreased. In addition, it was found that the time needed to allow oil absorption during cooling was extremely sensitive to pore radius, indicating the importance of an accurate pore size determination in future studies.