918 resultados para satellite-to-ground laser communications
Optical source model for the 23.2-23.6 nm radiation from the multielement germanium soft X-ray laser
Resumo:
Distributions of source intensity in two dimensions (designated the source model), averaged over a single laser pulse, based on experimental measurements of spatial coherence, are considered for radiation from the unresolved 23.2/23.6 nm spectral lines from the germanium collisional X-ray laser. The model derives from measurements of the visibility of Young slit interference fringes determined by a method based on the Wiener-Khinchin theorem. Output from amplifiers comprising three and four target elements have similar coherence properties in directions within the horizontal plane corresponding to strong plasma refraction effects and fitting the coherence data shows source dimensions (FWHM) are similar to 26 mu m (horizontal), significantly smaller than expected by direct imaging, and similar to 125 mu m (vertical: equivalent to the height of the driver excitation). (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The velocity distribution of ground-state titanium ions within a low-temperature plasma resulting from the laser ablation of a titanium target has been investigated. A KrF excimer laser was focused onto the target at moderate fluences (
Resumo:
Short pulses of 100 ps FWHM duration at 1.06 mu m wavelength are used as the pump source for driving the J = 0-1, 19.6 nm, Ne-like germanium X-ray laser. Different combinations of short pulses are investigated and quantitatively compared. Configurations investigated include a single pulse, double pulses at 400 ps and 800 ps separation, single pulses with prepulses and double pulses with prepulses. Data are presented in the form of integrated energy measurements, and supported by modelling. The most efficient short pulse configurations are shown to be orders of magnitude more effective than pumping with nanosecond duration pulses. (C) 1997 Elsevier Science B.V.
Resumo:
Multipulse irradiation with 100 ps pulses of stripe Germanium targets is shown to enhance by up to several orders-of-magnitude the output of Ne-like Ge lasing on the J = 0-1 line at 196 Angstrom compared to single pulse pumping. Various pre-pulse and multipulse configurations have been experimentally investigated for irradiances of approximate to 4 x 10(13) W/cm(2) with a 1.06 mu m wavelength pumping laser. The ionisation balance measured by a KeV crystal spectrometer (KAP crystal) has been found to not affect the X-ray laser output. Good agreement between the experimental results and a fluid code incorporating atomic physics, gain and X-ray beam ray tracing is obtained. The code results show that the enhanced X-ray laser output is produced by multipulse irradiation reducing the electron density gradients in the gain region and simultaneously increasing the gain region spatial size. These changes reduce the effect of refraction on the X-ray laser beam propagation.
Resumo:
We have studied the effect of prepulses in enhancing the efficiency of generating ASE beams in soft X-ray laser plasma amplifiers based on pumping Ne-like ions, Slab targets were irradiated with a weak prepulse followed by a main plasma heating pulse of nanosecond duration, Time-integrated; time and spectrally resolved and time and angularly resolved lasing emissions on the 3p-3s (J=0-1) XUV lasing lines of Ne-like Ni, Cu and Zn at wavelengths 232 Angstrom 221 Angstrom and 212 Angstrom respectively have been monitored. Measurements were made for pre-pulse/main-pulse intensity ratios from 10(-5)-10(-1) and for pump delay times of 2 ns and 4.5 ns. Zinc is shown to exhibit a peak in output intensity at similar to 2x10(-3) pre-pulse fraction for a 4.5 ns pump delay, with a main pulse pump intensity of similar to 1.3x10(13) W cm(-2) on a 20 mm target. The Zn lasing emission had a duration of similar to 240 ps and this was insensitive to prepulse fraction. The J=0-1 XUV laser output for nickel and copper increased monotonically with prepulse fraction, with copper targets showing least sensitivity to either prepulse level or prepulse to main pulse delay. Under the conditions of the study, the pre-pulse level was observed to haveno significant influence on the output intensity of the 3p-3s (J=2-1) lines of any of the elements investigated.
Resumo:
Through the use of time-integrated space-resolved keV spectroscopy, we investigate line plasmas showing gain in Ne-like nickel, copper, and zinc for irradiation using the prepulse technique. The experiments were conducted at 1.06 mu m with the prepulse to main pulse intensity contrast ranging from 10(-6) to 10(-2). The effect of the prepulses on the plasma conditions is inferred through spectroscopic line ratio diagnostics for the electron temperature, the Ne-like ground-state density, and the lateral size of the Ne-like region. It is observed that neither the value of the electronic temperature nor its spatially resolved profile along the linear focus axis varies significantly with the prepulse level, contrary to the lateral width and the density of the Ne-like region in the plasma, which are seen to increase. These results explain, at least in part, why prepulsed x-ray lasers show such high gain and brightness.
Resumo:
The XUV lasing output from one germanium slab target has been efficiently coupled into, and further amplified in, a second plasma produced by irradiation of a similar target from the opposite direction. The operation of such a double target was shown to be strongly dependent on the distance by which the two target surfaces were displaced. The line brightness peaked for a surface displacement of approximately 200-mu-m and it was observed that the pointing direction of one output beam could be controlled by the surface separation in an asymmetric geometry. Gain length products of approximately 16 with estimated output powers close to the megawatt level were achieved on both the 23.2 and 23.6 nm J=2-1 transitions for an optimised target configuration. Maximum effective coupling efficiencies of the individual outputs from double targets, comprising 2.2 and 1.4 cm length components, approached 100% for beams propagating from the shorter to the longer target.
Resumo:
The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated. (C) 2002 American Institute of Physics.
Resumo:
The level of second-harmonic light emitted from a laser-exploded foil plasma at nominal irradiance up to 3.10(13) W/cm2 was found to be extremely sensitive to both target position and irradiance on target. Either a small target displacement or a small increase in irradiance resulted in a jump of the 2omega level of more than three orders of magnitude. Correspondingly, a transition was observed from a 2omega source pattern clearly signed by the original laser spot pattern to unstable patterns of filaments whose size is consistent with the maximum growth of the instability.
Resumo:
The plasma produced during laser ablation deposition of thin film YBCO has been studied by optical emission spectroscopy. There is evidence of increased YO band emission in the range 590-625 nm as the ambient oxygen gas pressure confining the plume is increased in the range 30-200 m Torr. Temporal profiles show that close to the target the plume is insensitive to ambient oxygen pressure. It is deduced that the optical emission here is excited by electron impact excitation. Further away from the target there is evidence that two distinct processes are at work. One is again electron excitation; the emission from this process decreases with distance because the expanding plume cools and collisions become less frequent in the expanding gas. The second is driven by oxidation of atomic species expelled at high speeds from the target. The main region of this activity is in the plume sheath where a shock front ensures heating of ambient O2 and reaction of monatomic plasma species to form oxide in an exothermic reaction. Spatial mapping of the emission demonstrates clearly how increasing oxygen gas pressure confines the plasma and enhances the emission intensity from the molecular YO species ejected from the target in a smaller region close to the target. Ba+ is observed as a dominant species only very close to (within 1 mm of) the target. Absorption spectra have been taken in an attempt to examine ground state and cool species in the plume. They reveal the quite surprising result that YO persists in the chamber for periods up to 1 msec. This suggests an explanation for the recent report of off-axis laser deposition in terms of simple condensation. Previously, quasi-ballistic transfer of material from target to substrate has been considered the only significant process.