970 resultados para retinal dehydrogenases
Resumo:
PurposeTo evaluate the impact of traditional French summer vacation on visual acuity and spectral domain-optical coherence tomography (SD-OCT) of Wet AMD patients being treated with intravitreal Ranibizumab.MethodsThis was a consecutive, comparative, single-centre, prospective analysis. All patients who were being treated with intravitreal injection of 0.5 mg ranibizumab at Cergy Pontoise Hospital, Department of Ophthalmology between July 2013 and September 2014 were included. Patients were divided into two groups: (A) patients who skipped one ranibizumab intravitreal injection during holidays, and (B) patients who received injection during their holidays. Evaluations occurred prior to traditional holiday (baseline) and 2 months later, consisting of BCVA using ETDRS, and a complete ophthalmic examination that included slit-lamp biomicroscopy, fundus examination, fluorescein angiography (FA), indocyanine green angiography (ICGA), and spectral domain-optical coherence tomography (SD-OCT). All patients were being treated with PRN anti-VEGF regimen and criteria for reinjection included a visual acuity loss >5 ETDRS letters and/or an increase of central retinal thickness, presence of subretinal fluid, intraretinal fluid, or pigment epithelium detachment. If reinjection criteria were not met, patients were advised to return in 4 weeks.ResultsThe mean visual acuity change was -0.071±0.149 (LogMAR) in group A and +0.003±0.178 in group B (P=0.041). At the second visit (2 months after preholidays visit), 61.8% of patients in group A had SRF and/or intraretinal cysts, and only 27.6% of patients in group B. There was a significant difference in the persistence of fluid between the two groups (P=0.007, χ(2)-test).ConclusionThis cases series demonstrated the detrimental impact of holidays on visual acuity in patients treated with ranibizumab for AMD, which, in spite of their treatment regimen, still leave in vacation. Therefore, it is important to convey the message of treatment adherence to patients, despite their need of holidays.
Resumo:
PURPOSE: To study the effect of various baseline factors, particularly the type of drug (ranibizumab vs aflibercept), on the functional and anatomic response of treatment-naïve pigment epithelial detachment (PED) associated with neovascular age-related macular degeneration (neovascular AMD), after 3 intravitreal injections. DESIGN: Retrospective consecutive case series. METHODS: This study included 102 patients (n = 115 eyes) with treatment-naïve neovascular AMD and PED (>150 μm), who were treated with either ranibizumab (n = 68 eyes) or aflibercept (n = 47 eyes). A multivariate analysis using stepwise linear regression was performed in order to assess factors influencing visual acuity improvement, as well as treatment response of PED height after 3 monthly injections. RESULTS: Multivariate analysis revealed that better visual improvement was associated with lower best-corrected visual acuity (BCVA) at baseline (P = .001), presence of subretinal fluid (P = .001), and retinal angiomatous proliferation (P = .001); PED reduction was associated with higher PED at baseline (P = .001), predominantly serous PED (P = .003), and the use of aflibercept (P = .022). Drug type was not associated with change in BCVA at 3 months. CONCLUSION: Eyes with neovascular AMD and PED showed significant functional and anatomic response after 3 monthly intravitreal anti-VEGF injections. The functional response depended on baseline BCVA, presence of subretinal fluid, and retinal angiomatous proliferation, while anatomic response was influenced by baseline PED height, degree of vascularization, and drug type. Drug type was not associated with change in BCVA, but had a weak effect on anatomic response.
Resumo:
The management of intraocular retinoblastoma is rapidly changing, and even recent reviews on the subject are behind existing practices. The 4 authors of this report collectively represent their management strategies with an emphasis on areas of agreement and disagreement. Ophthalmic artery chemosurgery and intravitreous chemotherapy have completely replaced external beam radiotherapy, reduced the use of systemic chemotherapy, and diminished enucleations by 90% without evidence of compromising patient survival.
Resumo:
Defects in FAM161A, a protein of unknown function localized at the cilium of retinal photoreceptor cells, cause retinitis pigmentosa, a form of hereditary blindness. By using different fragments of this protein as baits to screen cDNA libraries of human and bovine retinas, we defined a yeast two-hybrid-based FAM161A interactome, identifying 53 bona fide partners. In addition to statistically significant enrichment in ciliary proteins, as expected, this interactome revealed a substantial bias towards proteins from the Golgi apparatus, the centrosome and the microtubule network. Validation of interaction with key partners by co-immunoprecipitation and proximity ligation assay confirmed that FAM161A is a member of the recently recognized Golgi-centrosomal interactome, a network of proteins interconnecting Golgi maintenance, intracellular transport and centrosome organization. Notable FAM161A interactors included AKAP9, FIP3, GOLGA3, KIFC3, KLC2, PDE4DIP, NIN and TRIP11. Furthermore, analysis of FAM161A localization during the cell cycle revealed that this protein followed the centrosome during all stages of mitosis, likely reflecting a specific compartmentalization related to its role at the ciliary basal body during the G0 phase. Altogether, these findings suggest that FAM161A's activities are probably not limited to ciliary tasks but also extend to more general cellular functions, highlighting possible novel mechanisms for the molecular pathology of retinal disease.
Resumo:
We report two unrelated patients with a multisystem disease involving liver, eye, immune system, connective tissue, and bone, caused by biallelic mutations in the neuroblastoma amplified sequence (NBAS) gene. Both presented as infants with recurrent episodes triggered by fever with vomiting, dehydration, and elevated transaminases. They had frequent infections, hypogammaglobulinemia, reduced natural killer cells, and the Pelger-Huët anomaly of their granulocytes. Their facial features were similar with a pointed chin and proptosis; loose skin and reduced subcutaneous fat gave them a progeroid appearance. Skeletal features included short stature, slender bones, epiphyseal dysplasia with multiple phalangeal pseudo-epiphyses, and small C1-C2 vertebrae causing cervical instability and myelopathy. Retinal dystrophy and optic atrophy were present in one patient. NBAS is a component of the synthaxin-18 complex and is involved in nonsense-mediated mRNA decay control. Putative loss-of-function mutations in NBAS are already known to cause disease in humans. A specific founder mutation has been associated with short stature, optic nerve atrophy and Pelger-Huët anomaly of granulocytes (SOPH) in the Siberian Yakut population. A more recent report associates NBAS mutations with recurrent acute liver failure in infancy in a group of patients of European descent. Our observations indicate that the phenotypic spectrum of NBAS deficiency is wider than previously known and includes skeletal, hepatic, metabolic, and immunologic aspects. Early recognition of the skeletal phenotype is important for preventive management of cervical instability. © 2015 Wiley Periodicals, Inc.
Resumo:
BIGH3 is a secreted protein, part of the extracellular matrix where it interacts with collagen and integrins on the cell surface. BIGH3 can play opposing roles in cancer, acting as either tumor suppressor or promoter, and its mutations lead to different forms of corneal dystrophy. Although many studies have been carried out, little is known about the physiological role of BIGH3. Using the cre-loxP system, we generated a mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing did not result in any apparent phenotype modifications, the mice remained viable and fertile. We were able to determine the presence of BIGH3 in the retinal pigment epithelium (RPE). In the absence of BIGH3, a transient decrease in the apoptotic process involved in retina maturation was observed, leading to a transient increase in the INL thickness at P15. This phenomenon was accompanied by an increased activity of the pro-survival ERK pathway.
Resumo:
Biocompatibility is a requirement for the development of nanofibers for ophthalmic applications. In this study, nanofibers were elaborated using poly(ε-caprolactone) via electrospinning. The ocular biocompatibility of this material was investigated. MIO-M1 and ARPE-19 cell cultures were incubated with nanofibers and cellular responses were monitored by viability and morphology. The in vitro biocompatibility revealed that the nanofibers were not cytotoxic to the ocular cells. These cells exposed to the nanofibers proliferated and formed an organized monolayer. ARPE-19 and MIO-M1 cells were capable of expressing GFAP, respectively, demonstrating their functionality. Nanofibers were inserted into the vitreous cavity of the rat's eye for 10days and the in vivo biocompatibility was investigated using Optical Coherence Tomography (OCT), histology and measuring the expression of pro-inflammatory genes (IL-1β, TNF-α, VEGF and iNOS) (real-time PCR). The OCT and the histological analyzes exhibited the preserved architecture of the tissues of the eye. The biomaterial did not elicit an inflammatory reaction and pro-inflammatory cytokines were not expressed by the retinal cells, and the other posterior tissues of the eye. Results from the biocompatibility studies indicated that the nanofibers exhibited a high degree of cellular biocompatibility and short-term intraocular tolerance, indicating that they might be applied as drug carrier for ophthalmic use.
Resumo:
Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. VIDEO ABSTRACT.
Resumo:
PURPOSE: To evaluate the effect of spironolactone, a mineralocorticoid receptor antagonist, for nonresolving central serous chorioretinopathy. METHODS: This is a prospective, randomized, double-blinded, placebo-controlled crossover study. Sixteen eyes of 16 patients with central serous chorioretinopathy and persistent subretinal fluid (SRF) for at least 3 months were enrolled. Patients were randomized to receive either spironolactone 50 mg or placebo once a day for 30 days, followed by a washout period of 1 week and then crossed over to either placebo or spironolactone for another 30 days. The primary outcome measure was the changes from baseline in SRF thickness at the apex of the serous retinal detachment. Secondary outcomes included subfoveal choroidal thickness and the ETDRS best-corrected visual acuity. RESULTS: The mean duration of central serous chorioretinopathy before enrollment in study eyes was 10 ± 16.9 months. Crossover data analysis showed a statistically significant reduction in SRF in spironolactone treated eyes as compared with the same eyes under placebo (P = 0.04). Secondary analysis on the first period (Day 0-Day 30) showed a significant reduction in subfoveal choroidal thickness in treated eyes as compared with placebo (P = 0.02). No significant changes were observed in the best-corrected visual acuity. There were no complications related to treatment observed. CONCLUSION: In eyes with persistent SRF due to central serous chorioretinopathy, spironolactone significantly reduced both the SRF and the subfoveal choroidal thickness as compared with placebo.
Resumo:
This study examined the effect of optic nerve disease, hence retinal ganglion cell loss, on non-visual functions related to melanopsin signalling. Test subjects were patients with bilateral visual loss and optic atrophy from either hereditary optic neuropathy (n = 11) or glaucoma (n = 11). We measured melatonin suppression, subjective sleepiness and cognitive functions in response to bright light exposure in the evening. We also quantified the post-illumination pupil response to a blue light stimulus. All results were compared to age-matched controls (n = 22). Both groups of patients showed similar melatonin suppression when compared to their controls. Greater melatonin suppression was intra-individually correlated to larger post-illumination pupil response in patients and controls. Only the glaucoma patients demonstrated a relative attenuation of their pupil response. In addition, they were sleepier with slower reaction times during nocturnal light exposure. In conclusion, glaucomatous, but not hereditary, optic neuropathy is associated with reduced acute light effects. At mild to moderate stages of disease, this is detected only in the pupil function and not in responses conveyed via the retinohypothalamic tract such as melatonin suppression.
Resumo:
Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.
Resumo:
PURPOSE OF REVIEW: Long-lasting devices releasing steroids have been approved recently for macular edema of various origins. Identification of the retina as a novel mineralo-sensitive tissue also raises new therapeutic options. RECENT FINDINGS: Recently, the over activation of the mineralocorticoid receptor (MR) pathway has been shown to cause fluid accumulation in the retina, choroidal vasodilation, and to promote retinal neovascularization in hypoxic conditions. These findings indicate that MR antagonists could have beneficial effects in the treatment of retinal diseases. Central serous chorioretinopathy is a retinal disease associated with choroidal vasodilation and subretinal fluid that affects mostly men with type A personality and occurrence has been associated with steroid intake. In several independent studies, MR antagonists have shown beneficial effects, significantly reducing subretinal fluid in eyes of chronic central serous chorioretinopathy patients. SUMMARY: The role of MR in retinal disorder is emerging and the potential association with psychological traits is considered. The place of MR antagonists for retinal diseases treatment is discussed.
Resumo:
Mono- and bi-allelic mutations in the low-density lipoprotein receptor related protein 5 (LRP5) may cause osteopetrosis, autosomal dominant and recessive exudative vitreoretinopathy, juvenile osteoporosis, or persistent hyperplastic primary vitreous (PHPV). We report on a child affected with PHPV and carrying compound mutations. The father carried the splice mutation and suffered from severe bone fragility since childhood. The mother carried the missense mutation without any clinical manifestations. The genetic diagnosis of their child allowed for appropriate treatment in the father and for the detection of osteopenia in the mother. Mono- and bi-allelic mutations in LRP5 may cause osteopetrosis, autosomal dominant and recessive exudative vitreoretinopathy, juvenile osteoporosis, or PHPV. PHPV is a component of persistent fetal vasculature of the eye, characterized by highly variable expressivity and resulting in a wide spectrum of anterior and/or posterior congenital developmental defects, which may lead to blindness. We evaluated a family diagnosed with PHPV in their only child. The child presented photophobia during the first 3 weeks of life, followed by leukocoria at 2 months of age. Molecular resequencing of NDP, FZD4, and LRP5 was performed in the child and segregation of the observed mutations in the parents. At presentation, fundus examination of the child showed a retrolental mass in the right eye. Ultrasonography revealed retinal detachment in both eyes. Thorough familial analysis revealed that the father suffered from many fractures since childhood without specific fragility bone diagnosis, treatment, or management. The mother was asymptomatic. Molecular analysis in the proband identified two mutations: a c.[2091+2T>C] splice mutation and c.[1682C>T] missense mutation. We report the case of a child affected with PHPV and carrying compound heterozygous LRP5 mutations. This genetic diagnosis allowed the clinical diagnosis of the bone problem to be made in the father, resulting in better management of the family. It also enabled preventive treatment to be prescribed for the mother and accurate genetic counseling to be provided.
Resumo:
The adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission. Here, we used a combination of serial-section immuno-electron microscopy, confocal microscopy, and electrophysiology to examine the formation of perisynaptic processes on adult-born neurons. We found that the afferent and efferent synapses of newborn neurons are ensheathed by astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by adult-born neurons suggest that the majority of these processes are recruited from pre-existing astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on these cells. Finally, some processes were found intercalated between newly formed dendritic spines and potential presynaptic partners, suggesting that they may also play a structural role in the connectivity of new spines. Together, these results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network.
Resumo:
Diabetic retinopathy is the leading cause of visual loss in individuals under the age of 55. Most investigations into the pathogenesis of diabetic retinopathy have been concentrated on the neural retina since this is where clinical lesions are manifested. Recently, however, various abnormalities in the structural and secretory functions of retinal pigment epithelium that are essential for neuroretina survival, have been found in diabetic retinopathy. In this context, here we study the effect of hyperglycemic and hypoxic conditions on the metabolism of a human retinal pigment epithelial cell line (ARPE-19) by integrating quantitative proteomics using tandem mass tagging (TMT), untargeted metabolomics using MS and NMR, and 13C-glucose isotopic labeling for metabolic tracking. We observed a remarkable metabolic diversification under our simulated in vitro hyperglycemic conditions of diabetes, characterized increased flux through polyol pathways and inhibition of the Krebs cycle and oxidative phosphorylation. Importantly, under low oxygen supply RPE cells seem to consume rapidly glycogen storages and stimulate anaerobic glycolysis. Our results therefore pave the way to future scenarios involving new therapeutic strategies addressed to modulating RPE metabolic impairment, with the aim of regulating structural and secretory alterations of RPE. Finally, this study shows the importance of tackling biomedical problems by integrating metabolomic and proteomics results.