923 resultados para respirazione, pattern recognition, apprendimento automatico, monitoraggio, segnali biomedici


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is to establish new optimization methods for pattern recognition and classification of different white blood cells in actual patient data to enhance the process of diagnosis. Beckman-Coulter Corporation supplied flow cytometry data of numerous patients that are used as training sets to exploit the different physiological characteristics of the different samples provided. The methods of Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used as promising pattern classification techniques to identify different white blood cell samples and provide information to medical doctors in the form of diagnostic references for the specific disease states, leukemia. The obtained results prove that when a neural network classifier is well configured and trained with cross-validation, it can perform better than support vector classifiers alone for this type of data. Furthermore, a new unsupervised learning algorithm---Density based Adaptive Window Clustering algorithm (DAWC) was designed to process large volumes of data for finding location of high data cluster in real-time. It reduces the computational load to ∼O(N) number of computations, and thus making the algorithm more attractive and faster than current hierarchical algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of remotely sensed data for environmental and ecological assessment has recently become more widespread in wetland research and management and advantages and limitations of this approach have been addresses (Ozesmi and Bauer 2002). Applications of remote sensing (RS) methods vary in spatial and temporal extent and resolution, in the types of data acquired, and in digital processing and pattern recognition algorithms used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to use algorithms known as Boltzmann Machine to rebuild and classify patterns as images. This algorithm has a similar structure to that of an Artificial Neural Network but network nodes have stochastic and probabilistic decisions. This work presents the theoretical framework of the main Artificial Neural Networks, General Boltzmann Machine algorithm and a variation of this algorithm known as Restricted Boltzmann Machine. Computer simulations are performed comparing algorithms Artificial Neural Network Backpropagation with these algorithms Boltzmann General Machine and Machine Restricted Boltzmann. Through computer simulations are analyzed executions times of the different described algorithms and bit hit percentage of trained patterns that are later reconstructed. Finally, they used binary images with and without noise in training Restricted Boltzmann Machine algorithm, these images are reconstructed and classified according to the bit hit percentage in the reconstruction of the images. The Boltzmann machine algorithms were able to classify patterns trained and showed excellent results in the reconstruction of the standards code faster runtime and thus can be used in applications such as image recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The automated sensing scheme described in this paper has the potential to automatically capture, discriminate and classify transients in gait. The mechanical simplicity of the walking platform offers advantages over standard force plates. There is less restriction on dimensions offering the opportunity for multi-contact and multiple steps. This addresses the challenge of patient targeting and the evaluation of patients in a variety of ambulatory applications. In this work the sensitivity of the distributive tactile sensing method has been investigated experimentally. Using coupled time series data from a small number of sensors, gait patterns are compared with stored templates using a pattern recognition algorithm. By using a neural network these patterns were interpreted classifying normal and affected walking events with an accuracy of just under 90%. This system has potential in gait analysis and rehabilitation as a tool for early diagnosis in walking disorders, for determining response to therapy and for identifying changes between pre and post operative gait. Copyright © 2009 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a mathematically well-founded approach for locating the source (initial state) of density functions evolved within a nonlinear reaction-diffusion model. The reconstruction of the initial source is an ill-posed inverse problem since the solution is highly unstable with respect to measurement noise. To address this instability problem, we introduce a regularization procedure based on the nonlinear Landweber method for the stable determination of the source location. This amounts to solving a sequence of well-posed forward reaction-diffusion problems. The developed framework is general, and as a special instance we consider the problem of source localization of brain tumors. We show numerically that the source of the initial densities of tumor cells are reconstructed well on both imaging data consisting of simple and complex geometric structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely accepted that infants begin learning their native language not by learning words, but by discovering features of the speech signal: consonants, vowels, and combinations of these sounds. Learning to understand words, as opposed to just perceiving their sounds, is said to come later, between 9 and 15 mo of age, when infants develop a capacity for interpreting others' goals and intentions. Here, we demonstrate that this consensus about the developmental sequence of human language learning is flawed: in fact, infants already know the meanings of several common words from the age of 6 mo onward. We presented 6- to 9-mo-old infants with sets of pictures to view while their parent named a picture in each set. Over this entire age range, infants directed their gaze to the named pictures, indicating their understanding of spoken words. Because the words were not trained in the laboratory, the results show that even young infants learn ordinary words through daily experience with language. This surprising accomplishment indicates that, contrary to prevailing beliefs, either infants can already grasp the referential intentions of adults at 6 mo or infants can learn words before this ability emerges. The precocious discovery of word meanings suggests a perspective in which learning vocabulary and learning the sound structure of spoken language go hand in hand as language acquisition begins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selected publications are focused on the relations between users, eGames and the educational context, and how they interact together, so that both learning and user performance are improved through feedback provision. A key part of this analysis is the identification of behavioural, anthropological patterns, so that users can be clustered based on their actions, and the steps taken in the system (e.g. social network, online community, or virtual campus). In doing so, we can analyse large data sets of information made by a broad user sample,which will provide more accurate statistical reports and readings. Furthermore, this research is focused on how users can be clustered based on individual and group behaviour, so that a personalized support through feedback is provided, and the personal learning process is improved as well as the group interaction. We take inputs from every person and from the group they belong to, cluster the contributions, find behavioural patterns and provide personalized feedback to the individual and the group, based on personal and group findings. And we do all this in the context of educational games integrated in learning communities and learning management systems. To carry out this research we design a set of research questions along the 10-year published work presented in this thesis. We ask if the users can be clustered together based on the inputs provided by them and their groups; if and how these data are useful to improve the learner performance and the group interaction; if and how feedback becomes a useful tool for such pedagogical goal; if and how eGames become a powerful context to deploy the pedagogical methodology and the various research methods and activities that make use of that feedback to encourage learning and interaction; if and how a game design and a learning design must be defined and implemented to achieve these objectives, and to facilitate the productive authoring and integration of eGames in pedagogical contexts and frameworks. We conclude that educational games are a resourceful tool to provide a user experience towards a better personalized learning performance and an enhance group interaction along the way. To do so, eGames, while integrated in an educational context, must follow a specific set of user and technical requirements, so that the playful context supports the pedagogical model underneath. We also conclude that, while playing, users can be clustered based on their personal behaviour and interaction with others, thanks to the pattern identification. Based on this information, a set of recommendations are provided Digital Anthropology and educational eGames 6 /216 to the user and the group in the form of personalized feedback, timely managed for an optimum impact on learning performance and group interaction level. In this research, Digital Anthropology is introduced as a concept at a late stage to provide a backbone across various academic fields including: Social Science, Cognitive Science, Behavioural Science, Educational games and, of course, Technology-enhance learning. Although just recently described as an evolution of traditional anthropology, this approach to digital behaviour and social structure facilitates the understanding amongst fields and a comprehensive view towards a combined approach. This research takes forward the already existing work and published research onusers and eGames for learning, and turns the focus onto the next step — the clustering of users based on their behaviour and offering proper, personalized feedback to the user based on that clustering, rather than just on isolated inputs from every user. Indeed, this pattern recognition in the described context of eGames in educational contexts, and towards the presented aim of personalized counselling to the user and the group through feedback, is something that has not been accomplished before.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From futures research, pattern recognition algorithms, nuclear waste disposal and surveillance technologies, to smart weapons systems, contemporary fiction and art, this book shows that we are now living in a world imagined and engineered during the Cold War. Drawing on theorists such as Jean Baudrillard, Jacques Derrida, Michel Foucault, Luce Irigaray, Friedrich Kittler, Michel Serres, Peter Sloterdijk, Carl Schmitt, Bernard Stiegler and Paul Virilio this collection makes connections between Cold War material and conceptual technologies, as they relate to the arts, society, and culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a substantial effort to build a real-time interactive multimodal dialogue system with a focus on emotional and non-verbal interaction capabilities. The work is motivated by the aim to provide technology with competences in perceiving and producing the emotional and non-verbal behaviours required to sustain a conversational dialogue. We present the Sensitive Artificial Listener (SAL) scenario as a setting which seems particularly suited for the study of emotional and non-verbal behaviour, since it requires only very limited verbal understanding on the part of the machine. This scenario allows us to concentrate on non-verbal capabilities without having to address at the same time the challenges of spoken language understanding, task modeling etc. We first summarise three prototype versions of the SAL scenario, in which the behaviour of the Sensitive Artificial Listener characters was determined by a human operator. These prototypes served the purpose of verifying the effectiveness of the SAL scenario and allowed us to collect data required for building system components for analysing and synthesising the respective behaviours. We then describe the fully autonomous integrated real-time system we created, which combines incremental analysis of user behaviour, dialogue management, and synthesis of speaker and listener behaviour of a SAL character displayed as a virtual agent. We discuss principles that should underlie the evaluation of SAL-type systems. Since the system is designed for modularity and reuse, and since it is publicly available, the SAL system has potential as a joint research tool in the affective computing research community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This theoretical paper attempts to define some of the key components and challenges required to create embodied conversational agents that can be genuinely interesting conversational partners. Wittgenstein's argument concerning talking lions emphasizes the importance of having a shared common ground as a basis for conversational interactions. Virtual bats suggests that-for some people at least-it is important that there be a feeling of authenticity concerning a subjectively experiencing entity that can convey what it is like to be that entity. Electric sheep reminds us of the importance of empathy in human conversational interaction and that we should provide a full communicative repertoire of both verbal and non-verbal components if we are to create genuinely engaging interactions. Also we may be making the task more difficult rather than easy if we leave out non-verbal aspects of communication. Finally, analogical peacocks highlights the importance of between minds alignment and establishes a longer term goal of being interesting, creative, and humorous if an embodied conversational agent is to be truly an engaging conversational partner. Some potential directions and solutions to addressing these issues are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field experiment was conducted on a real continuous steel Gerber-truss bridge with artificial damage applied. This article summarizes the results of the experiment for bridge damage detection utilizing traffic-induced vibrations. It investigates the sensitivities of a number of quantities to bridge damage including the identified modal parameters and their statistical patterns, Nair’s damage indicator and its statistical pattern and different sets of measurement points. The modal parameters are identified by autoregressive time-series models. The decision on bridge health condition is made and the sensitivity of variables is evaluated with the aid of the Mahalanobis–Taguchi system, a multivariate pattern recognition tool. Several observations are made as follows. For the modal parameters, although bridge damage detection can be achieved by performing Mahalanobis–Taguchi system on certain modal parameters of certain sets of measurement points, difficulties were faced in subjective selection of meaningful bridge modes and low sensitivity of the statistical pattern of the modal parameters to damage. For Nair’s damage indicator, bridge damage detection could be achieved by performing Mahalanobis–Taguchi system on Nair’s damage indicators of most sets of measurement points. As a damage indicator, Nair’s damage indicator was superior to the modal parameters. Three main advantages were observed: it does not require any subjective decision in calculating Nair’s damage indicator, thus potential human errors can be prevented and an automatic detection task can be achieved; its statistical pattern has high sensitivity to damage and, finally, it is flexible regarding the choice of sets of measurement points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the problem of detecting human behavioural anomalies in crowded surveillance environments. We focus in particular on the problem of detecting subtle anomalies in a behaviourally heterogeneous surveillance scene. To reach this goal we implement a novel unsupervised context-aware process. We propose and evaluate a method of utilising social context and scene context to improve behaviour analysis. We find that in a crowded scene the application of Mutual Information based social context permits the ability to prevent self-justifying groups and propagate anomalies in a social network, granting a greater anomaly detection capability. Scene context uniformly improves the detection of anomalies in both datasets. The strength of our contextual features is demonstrated by the detection of subtly abnormal behaviours, which otherwise remain indistinguishable from normal behaviour.

Relevância:

100.00% 100.00%

Publicador: