998 resultados para resistance welding
Resumo:
Field experiments were conducted in the 1995-96 soybean (Glycine max) growing season to evaluate the effects of cultural practices and host genetic resistance on the intensity of soybean stem canker, caused by Diaporthe phaseolorum f.sp. meridionalis (Dpm). Experiments were conducted in a commercial field severely infected in the previous (1994-95) season. In one study, minimum tillage (MT) and no-tillage (NT) cropping systems were investigated for their effects on disease development and on plant yields in cvs. FT-Cristalina (susceptible) and FT-Seriema (moderately resistant). Another study evaluated the effects of plant densities (8, 15, 21 and 36 plants/m) on disease development in cvs. FT-Cristalina, FT-101 (moderately resistant) and FT-104 (resistant). Disease incidence and severity were consistently lower in NT than in MT, and plant yields were increased by 23% and 14% in the NT system for the susceptible and moderately resistant cultivars, respectively, compared to the yields in the MT system. The Gompertz and Logistic models described well the disease progress curves in all situations. For both susceptible and moderately resistant cultivars, disease severity increased proportionately to the increase in plant densities. At the end of the season, 100% of the plants of cv. FT-Cristalina were infected by Dpm, at all plant densities. Disease levels on cv. FT-101 were intermediate while only very low disease levels were recorded on cv. FT-104. There was a consistent negative correlation between stem canker severity and yield. Some practices demonstrated potential for direct application in disease control, and could be combined considering their additive effects.
Resumo:
The gene Pi-ar confers resistance to Pyricularia grisea race IB-45 in a somaclone derived from immature panicles of the susceptible rice (Oryza sativa) cultivar Araguaia. RAPD technique was used to identify molecular markers linked to this gene utilizing bulked segregant analysis. Initially, the two parental DNAs from the resistant donor SC09 and 'Araguaia' were analyzed using random primers. Of the 240 primers tested, 203 produced amplification products. The two parental DNAs along with the resistant and susceptible bulks of F2 population were screened using 48 primers that differentiated resistant and susceptible parents. Even though eight primers differentiated the resistant bulk from the susceptible bulk, as well as somaclone SC09 and 'Araguaia', only one primer, OPC02 ('GTGAGGCGTC'), was found to be tightly linked (1.7cM) to the resistance gene of somaclone SC09.
Resumo:
Thirty-nine rice (Oryza sativa) hybrids and their restorers were assessed for vertical resistance to Pyricularia grisea in the rice blast nursery, and in artificial inoculation tests with two pathotypes, under controlled greenhouse conditions. The hybrids were developed from cytoplasmic genetic male sterile lines 046I and IR 58025A, derived from WA cytoplasm. In the rice blast nursery all hybrids showed susceptible reaction varying from 5 to 9. Compatible and incompatible leaf blast reactions of hybrids to two pathotypes, IC-1 and IB-45, were observed in inoculation tests. A majority of the hybrids were resistant when the restorer was resistant. However, seven of the 25 F1 hybrids exhibited susceptible reactions even when one of the parents was resistant to a pathotype. The partial resistance of 11 hybrids and their parents that showed compatible reactions to two pathotypes was analyzed. Differential interaction between isolates and genotypes was observed for partial resistance in relation to both disease severity and lesion number indicating the specific nature of partial resistance.
Resumo:
Common bean (Phaseolus vulgaris) cultivars with a high degree of resistance to Xanthomonas axonopodis pv. phaseoli (Xap) are not available in Brazil. Despite many studies, a low degree of resistance to Xap continues to exist due to its complex genetic inheritance, which is not well known. The objectives of this research were to complement a common bean genetic map based on the cross between a susceptible genotype 'HAB-52' and a resistant genotype 'BAC-6', and to map and analyze genomic regions (quantitative trait loci – QTLs) related to Xap resistance. Eleven linkage groups were determined using 143 RAPD markers, covering 1,234.5 cM of the genome. This map was used to detect QTLs associated with Xap resistance on leaves and pods. The averages of disease severity on leaves (represented by the transformed disease index – TDI) and pods (represented by the diameter of lesion on pods – DLP) were added to the data of the linkage map. Five TDI QTLs and only one LDP QTL were detected. The TDI QTLs were placed in the A, B, G and J linkage groups, with phenotypic variations ranging from 12.7 to 71.6%. The DLP QTL explained 12.9% of the phenotypic variation and was mapped in a distinct linkage group. These results indicate that there are different genes involved in the control of resistance on leaves and pods.
Resumo:
Seventy-two monoconidial isolates of Magnaporthe grisea were obtained from the States of Mato Grosso do Sul and Paraná. The isolates were inoculated on seedlings of 20 wheat (Triticum aestivum) cultivars under greenhouse conditions. The virulence diversity of M. grisea was assessed based on compatible and incompatible reactions of leaf blast on wheat cultivars. Fifty-four distinct virulence patterns were identified on test cultivars among the isolates collected from the two wheat growing States. Sixteen of these isolates corresponding to 22.2% showed similar virulence pattern. None of the wheat cultivars was resistant to all isolates of M. grisea, but the cultivars differed in degree of resistance as measured by the relative spectrum of resistance (RSR) and disease index (DI). Among the cultivars the RSR ranged from 0 to 53.3% and DI from 0.4662 to 0.9662 (0 to 1 scale). The wheat cultivar BR18 exhibited a broad resistance spectrum in relation to the rest of the tested cultivars to the isolates of M. grisea, and can be used in wheat resistance breeding.
Resumo:
The main objective of this work was to identify sources of resistance in sorghum (Sorghum bicolor) to Peronosclerospora sorghi, the causal agent of downy mildew, through the evaluation of 42 sorghum genotypes under natural infection in the field. Genotypes were planted in single row plots between two rows of the susceptible line SC283, planted 30 days before, to act as spreader rows, in two separate nurseries. The experimental design was a completely randomized block design with three replications. Sorghum genotypes CMSXS156, CMSXS157, CMSXS243, TxARG-1, 8902, 9902054, 9910032, 9910296, Tx430, QL-3, SC170-6-17, CMSXS762 and BR304 were classified as highly resistant in both nurseries. Among these, SC170-6-17 and 9910296 showed 0% systemic infection. Results indicated the possible occurrence of different pathotypes of P. sorghi in the two nurseries.
Resumo:
The main objective of this work was to evaluate the diversification of sorghum (Sorghum bicolor) populations as a way to manage resistance to the sorghum anthracnose fungus Colletotrichum graminicola. A total of 18 three-way hybrids were obtained by crossing six single cross male-sterile F1 hybrids, derived by crossing A (non restorer sterile cytoplasm) and B (non restorer normal cytoplasm) lines, with three fertile R (restorer) lines, previously evaluated for their differential reaction to the pathogen. Variation in the level of resistance was observed, as indicated by the values of the area under the disease progress curve (AUDPC) obtained for each hybrid. Lines contributed differently to the level of resistance of each hybrid. All hybrids in which CMSXS169R was the male progenitor were classified as highly resistant. Some hybrids had a level of resistance superior to the maximum levels of each line component individually.
Resumo:
Meloidogyne mayaguensis has been reported in some states of Brazil causing severe damage on commercial guava (Psidium guajava L.). Accessions of Psidium spp. were selected from a collection maintained in Embrapa Clima Temperado (Pelotas, Rio Grande do Sul State). Plants of different accessions were grown from seed in plastic bags and, when they reached 15-20 cm in height, were inoculated with 10,000 eggs/plant of M. mayaguensis. Eight months after inoculation, the different accessions were evaluated for resistance to M. mayaguensis. Three accessions of P. guajava were highly susceptible (RF=59.2) to this nematode. Psidium friedrichsthalianium was considered to be moderately resistant (RF=1.9). Three accessions of P. cattleyanum were immune to M. mayaguensis (RF = 0). When used as rootstocks P. cattleyanum and P. friedrichsthalianium were compatible with P. guajava cv. Paluma. Considering these results, the use of resistant rootstocks provides a promising control method for M. mayaguensis in commercial guava crop.
Resumo:
Resistance of fourteen Theobroma cacao clones to Phytophthora spp. was evaluated using stem inoculations on grafted seedlings. Concepts of phenotypic stability were used to interpret the results and to express horizontality of the resistance. The linear regression coefficient 'b', the determination coefficient (R²) and average lesion size were used to determine the level of horizontal resistance, the phenotypic stability and the predictability of all clones. The results indicated that clones P 7 and MA 15 present highest levels of horizontal resistance and stability, but with moderate predictability. Clones CAS 1 and CEPEC 13 were classified as those with high horizontal resistance, stability and predictability, while clones PA 30, UF 650 and SIAL 88 and EET 59 showed intermediate resistance and stability and high predictability. Clones SPA 17, OC 61, PA 150, SIAL 505, ICS 1 and R 41 presented high susceptibility and intermediate or low stability and moderate or high predictability.
Resumo:
Due to functional requirement of a structural detail brackets with and without scallop are frequently used in bridges, decks, ships and offshore structure. Scallops are designed to serve as passage way for fluids, to reduce weld length and plate distortions. Moreover, scallops are used to avoid intersection of two or more welds for the fact that there is the presence of inventible inherent initial crack except for full penetrated weld and the formation of multi-axial stress state at the weld intersection. Welding all around the scallop corner increase the possibility of brittle fracture even for the case the bracket is not loaded by primary load. Avoiding of scallop will establish an initial crack in the corner if bracket is welded by fillet welds. If the two weld run pass had crossed, this would have given a 3D residual stress situation. Therefore the presences and absence of scallop necessitates the 3D FEA fatigue resistance of both types of brackets using effective notch stress approach ( ). FEMAP 10.1 with NX NASTRAN was used for the 3D FEA. The first and main objective of this research was to investigate and compare the fatigue resistance of brackets with and without scallop. The secondary goal was the fatigue design of scallops in case they cannot be avoided for some reason. The fatigue resistance for both types of brackets was determined based on approach using 1 mm fictitiously rounded radius based on IIW recommendation. Identical geometrical, boundary and loading conditions were used for the determination and comparison of fatigue resistance of both types of brackets using linear 3D FEA. Moreover the size effect of bracket length was also studied using 2D SHELL element FEA. In the case of brackets with scallop the flange plate weld toe at the corner of the scallop was found to exhibit the highest and made the flange plate weld toe critical for fatigue failure. Whereas weld root and weld toe at the weld intersections were the highly stressed location for brackets without scallop. Thus weld toe for brackets with scallop, and weld root and weld toe for brackets without scallop were found to be the critical area for fatigue failure. Employing identical parameters on both types of brackets, brackets without scallop had the highest except for full penetrated weld. Furthermore the fatigue resistance of brackets without scallop was highly affected by the lack of weld penetration length and it was found out that decreased as the weld penetration was increased. Despite the fact that the very presence of scallop reduces the stiffness and also same time induce stress concentration, based on the 3D FEA it is worth concluding that using scallop provided better fatigue resistance when both types of brackets were fillet welded. However brackets without scallop had the highest fatigue resistance when full penetration weld was used. This thesis also showed that weld toe for brackets with scallop was the only highly stressed area unlike brackets without scallop in which both weld toe and weld root were the critical locations for fatigue failure when different types of boundary conditions were used. Weld throat thickness, plate thickness, scallop radius, lack of weld penetration length, boundary condition and weld quality affected the fatigue resistance of both types of brackets. And as a result, bracket design procedure, especially welding quality and post weld treatment techniques significantly affect the fatigue resistance of both type of brackets.
Resumo:
Welding is one of the most important process of modern industry. Welding technology is used in the manufacture and repair a wide variety of products from different metals and alloys. In this thesis the different aspects of arc welding were discussed, such as stability and control of welding arc, power supplies for arc welding (especially the welding inverters because it is the most modern welding power source). All parameters of power source have influence on the arc parameters and its by-turn influence on quality. The ways of control for arc welding inverter power sources have been considered. Calculations and modeling in Matlab/Simulink were done for PI control method. All parameters of power source have influence on the arc parameters and its by-turn influence on quality.
Resumo:
Four cultivars and 21 lines of cotton were evaluated for resistance to ramulose (Colletotrichum gossypii f. sp. cephalosporioides) in a field where the disease is endemic. The seeds of each genotype were planted in 5 x 5 m plots with three replications. The lines CNPA 94-101 and 'CNPA Precoce 2'were used as standard susceptible and resistant references, respectively. The disease incidence (DI) was calculated from the proportion of diseased plants in the plot. The disease index (DIn) was calculated from the disease severity using a 1 to 9 scale, and was evaluated at weekly intervals starting 107 days after emergence. The data collected was used to calculate the area under disease progress curve (AUDPC). In general, the DIn increased linearly with time and varied from 20.0 to 57.1 and AUDPC from 567 to 1627 among the genotypes which could be clustered in to two distinct groups. The susceptible group contained two cultivars and nine lines and the resistant group contained one cultivar and 12 lines. The relationship between disease index and evaluation times was linear for the 25 genotypes tested. The line CNPA 94-101, used as susceptible standard, was the most susceptible with an average DI = 83.4, DIn = 57.1 and AUDPC = 1627.7. The line CNPA 96-08 with DI = 37.8, DIn = 20.0 and AUDPC = 567.7 was the most resistant one. Among the commercial cultivars 'IAC 22' was the most susceptible and 'CNPA Precoce 2', used as resistant standard was the most resistant. The variability in virulence of the pathogen was studied by spray inoculating nine genotypes with conidial suspensions (10(5)/mL) of either of the 10 isolates. The disease severity was evaluated 30 days later using a scale of 1 to 5. The virulence of the isolate was expressed by DIn. All the isolates were highly virulent but their virulence avaried for several genotypes and could be clustered in two distinct groups of less and more virulent isolates. The isolate MTRM 14 from Mato Grosso was the least virulent while Minas Gerais was the most virulent, with DIn of 6.36 and 46.47, respectively. In this experiment the line HR 102 and the cultivar 'Antares' were the most resistant ones with DIns of 18.32 and 19.14, respectively.
Resumo:
Työ tehtiin Steris Finn Aqualle, joka oli ottanut tuotantoon uuden autoklaavimallin kevään 2007 aikana. Työn tavoitteena oli kehittää painelaitteen hitsausta vertailemalla kevytmekanisointi, mekanisointi ja robotisointiratkaisuja ja hankkia riittävät tiedot mahdollisen investointipaatoksen tueksi. Tarkastellut kevytmekanisointilaitteet koostuivat kuljetinkiskosta, kuljettimesta ja mahdollisesta railonseurantalaitteesta. Tarkasteltu mekanisointijärjestelmä oli asiakaskohtaisesti räätälöitävä kokonaisuus. Tarkasteltuun hitsausrobottijärjestelmään kuului kappaleenkäsittelylaite sekä etäohjelmointiohjelmisto. Työn teoriaosassa käsiteltiin painelaitelainsäädännön vaikutuksia tuotantoon, ruostumattoman ja haponkestävän teräksen ominaisuuksia hitsauksen kannalta, tuotannossa käytettäviä hitsausprosesseja, hitsauksen mekanisointia ja automatisointia sekä railonseurantaa. Työn käytännön osuudessa käytiin läpi painelaitevalmistuksen nykytila. Painelaitevalmistus jaettiin eri työvaiheisiin ja työvaiheet analysoitiin, millä varmistettiin, että kehitysresurssit suunnataan oikeisiin kohteisiin. Kehitysehdotuksena esitettiin joko railonseurannalla varustetun kevytmekanisointilaitteiston tai etäohjelmoitavan hitsausrobottijärjestelmän hankintaa. Kevytmekanisoinnilla on mahdollista saavuttaa samat edut kuin kalliimmillakin mekanisointilaitteilla ja kevytmekanisoinnin etuna on käyttöönoton helppous ja laitteiston edullisuus. Hitsausrobotin hankintaan liittyy epävarmuustekijöitä, joiden tarkempi selvittäminen on tarpeen, ennen hitsausrobotin hankintapaatosta. Suuremmilla tuotantomäärillä hitsausrobottisolu olisi ollut selkeästi parempi ratkaisu.
Resumo:
The oxygen cutting is a thermal cutting process, in which metal is heated locally up to its ignition temperature and burnt off by oxygen blast. Oxygen cutting can be used to remove upset metal of a hollow bar occurred due to solid-state welding process. The main goal of this research was to establish a connection between oxygen blasts and mass of metal removed and relate findings to production to suggest improvements to the current process. This master´s thesis describes the designing and building of a test rig for oxygen blowing measurements. It also contains all executed tests and test results, which were carried out. There are different cutting parameters which were studied as well as their effect on cutting process. The oxygen cutting process, used in solid-state welding process, can be improved by the test results.