1000 resultados para quench simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high computational cost of correlated wavefunction theory (WFT) calculations has motivated the development of numerous methods to partition the description of large chemical systems into smaller subsystem calculations. For example, WFT-in-DFT embedding methods facilitate the partitioning of a system into two subsystems: a subsystem A that is treated using an accurate WFT method, and a subsystem B that is treated using a more efficient Kohn-Sham density functional theory (KS-DFT) method. Representation of the interactions between subsystems is non-trivial, and often requires the use of approximate kinetic energy functionals or computationally challenging optimized effective potential calculations; however, it has recently been shown that these challenges can be eliminated through the use of a projection operator. This dissertation describes the development and application of embedding methods that enable accurate and efficient calculation of the properties of large chemical systems.

Chapter 1 introduces a method for efficiently performing projection-based WFT-in-DFT embedding calculations on large systems. This is accomplished by using a truncated basis set representation of the subsystem A wavefunction. We show that naive truncation of the basis set associated with subsystem A can lead to large numerical artifacts, and present an approach for systematically controlling these artifacts.

Chapter 2 describes the application of the projection-based embedding method to investigate the oxidative stability of lithium-ion batteries. We study the oxidation potentials of mixtures of ethylene carbonate (EC) and dimethyl carbonate (DMC) by using the projection-based embedding method to calculate the vertical ionization energy (IE) of individual molecules at the CCSD(T) level of theory, while explicitly accounting for the solvent using DFT. Interestingly, we reveal that large contributions to the solvation properties of DMC originate from quadrupolar interactions, resulting in a much larger solvent reorganization energy than that predicted using simple dielectric continuum models. Demonstration that the solvation properties of EC and DMC are governed by fundamentally different intermolecular interactions provides insight into key aspects of lithium-ion batteries, with relevance to electrolyte decomposition processes, solid-electrolyte interphase formation, and the local solvation environment of lithium cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis outlines the construction of several types of structured integrators for incompressible fluids. We first present a vorticity integrator, which is the Hamiltonian counterpart of the existing Lagrangian-based fluid integrator. We next present a model-reduced variational Eulerian integrator for incompressible fluids, which combines the efficiency gains of dimension reduction, the qualitative robustness to coarse spatial and temporal resolutions of geometric integrators, and the simplicity of homogenized boundary conditions on regular grids to deal with arbitrarily-shaped domains with sub-grid accuracy.

Both these numerical methods involve approximating the Lie group of volume-preserving diffeomorphisms by a finite-dimensional Lie-group and then restricting the resulting variational principle by means of a non-holonomic constraint. Advantages and limitations of this discretization method will be outlined. It will be seen that these derivation techniques are unable to yield symplectic integrators, but that energy conservation is easily obtained, as is a discretized version of Kelvin's circulation theorem.

Finally, we outline the basis of a spectral discrete exterior calculus, which may be a useful element in producing structured numerical methods for fluids in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical simulation of the wavefronts diffracted by apertures with circular symmetry is realized by a numerical method. It is based on the angular spectrum of plane waves, which ignored the vector nature of light. The on-axial irradiance distributions of plane wavefront and Gauss wavefront diffracted by the circular aperture have been calculated along the propagation direction. Comparisons of the simulation results with the analytical results and the experimental results tell us that it is a feasible method to calculate the diffraction of apertures. (c) 2006 Published by Elsevier GmbH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A indústria de processos químicos tem sofrido consideráveis transformações devido ao acirramento da competitividade. Importantes progressos tecnológicos têm sido atingidos através de técnicas de modelagem, simulação e otimização visando o aumento da lucratividade e melhoria contínua nos processos industriais. Neste contexto, as plantas de metanol, um dos mais importantes produtos petroquímicos, podem ser destacadas. Atualmente, a principal matéria-prima para obtenção de metanol é o gás natural. A produção do metanol é caracterizada por três etapas: geração de gás de síntese, conversão do gás de síntese em metanol (unidade de síntese ou loop de síntese) e purificação do produto na especificação requerida. Os custos fixos e variáveis da unidade de síntese são fortemente dependentes das variáveis operacionais, como temperatura, pressão, razão de reciclo e composição da carga. Desta forma, foi desenvolvido um conjunto de modelos e algoritmos computacionais para representar matematicamente unidades de síntese de metanol. O modelo apresenta operações unitárias associadas aos seguintes equipamentos: divisores de correntes, misturadores de correntes, compressores, trocadores de calor, vasos de flash e reatores. Inicialmente, foi proposto um simulador estacionário, que serviu como base para um pseudo-estacionário, o qual contempla a desativação do catalisador por sinterização térmica. Os simuladores foram criados segundo uma arquitetura seqüencial modular e empregou-se o método de substituição sucessiva para a convergência dos reciclos. O estudo envolveu dois fluxogramas típicos, um constituído por reatores adiabáticos em série, enquanto o outro constituído por um reator tipo quench. Uma análise do efeito das principais variáveis operacionais foi realizada para o reator e para o loop de síntese. Estudou-se também o efeito da desativação do catalisador ao longo do tempo. Uma ferramenta de otimização operacional foi empregada para alcançar a máxima produção manipulando as injeções de carga fria na entrada dos leitos catalíticos. Formulou-se também um problema de maximização do lucro em função da otimização de paradas da unidade para troca do catalisador. Os resultados obtidos apontam que a ferramenta desenvolvida é promissora para a compreensão e otimização da unidade objeto deste estudo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.

This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.

Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.

It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.