989 resultados para quantum mechanical


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a self-consistent Poisson-Schr¨odinger scheme including the effects of the piezoelectricity, the spontaneous polarization and the charge density on the electronic states and the quasi-Fermi level energy in wurtzite type semiconductor heterojunction and quantum-laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of 4.0 MeV proton irradiation on the microstructure and mechanical properties of nanocrystalline (nc) nickel was investigated. The irradiation damage induced in the sample was of the order of 0.004 dpa. Transmission electron microscopy of irradiated samples indicated the presence of dislocation loops within the grains. An increase in hardness and strain-rate sensitivity (m) of nc-Ni with irradiation was noted. The rate-controlling deformation mechanism in irradiated nc-Ni was identified to be interaction of dislocations with irradiation-induced defects. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of polymer grafting on the phase behavior and elastic properties of two tail lipid bilayers have been investigated using dissipative particle dynamics simulations. For the range of polymer lengths studied, the L(c) to L(alpha) transition temperature is not significantly affected for grafting fractions, G(f) between 0.16 and 0.25. A decrease in the transition temperature is observed at a relatively high grafting fraction, G(f) = 0.36. At low temperatures, a small increase in the area per head group, a(h), at high G(f) leads to an increase in the chain tilt, inducing order in the bilayer and the solvent. The onset of the phase transition occurs with the nucleation of small patches of thinned membrane which grow and form continuous domains as the temperature increases. This region is the co-existence region between the L(beta)(thick) and the L(alpha)(thin) phases. The simulation results for the membrane area expansion as a function of the grafting density conform extremely well to the scalings predicted by self-consistent mean field theories. We find that the bending modulus shows a small decrease for short polymers (number of beads, N(p) = 10) and low G(f), where the influence of polymer is reduced when compared to the effect of the increased a(h). For longer polymers (N(p) > 15), the bending modulus increases monotonically with increase in grafted polymer. Using the results from mean field theory, we partition the contributions to the bending modulus from the membrane and the polymer and show that the dominant contribution to the increased bending modulus arises from the grafted polymer. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3631940]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a quantum random walk algorithm, based on the Dirac operator instead of the Laplacian. The algorithm explores multiple evolutionary branches by superposition of states, and does not require the coin toss instruction of classical randomised algorithms. We use this algorithm to search for a marked vertex on a hypercubic lattice in arbitrary dimensions. Our numerical and analytical results match the scaling behaviour of earlier algorithms that use a coin toss instruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were fabricated on silicon nitride/Si (111) substrate by droplet epitaxy. Single-crystalline structure of InN QDs was verified by transmission electron microscopy, and the chemical bonding configurations of InN QDs were examined by x-ray photoelectron spectroscopy. Photoluminescence measurement shows a slight blue shift compared to the bulk InN, arising from size dependent quantum confinement effect. The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of InN QDs were studied in a metal-semiconductor-metal configuration in the temperature range of 80-300K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3651762]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report a significant improvement in mechanical properties of near eutectic Nb-Si alloys by addition of Gallium (Ga) and control of microstructural length scale. A comparative study of two alloys Nb-18.79 at.%Si and Nb-20.2 at.%Si-2.7 at.%Ga were carried out. The microstructure refinements were carried out by vacuum suction casting in water cooled thick copper mold. It is shown that addition of Ga suppresses Nb(3)Si phase and promotes beta-Nb(5)Si(3) phase. The microstructural length scale and in particular eutectic spacing reduces significantly to 50-100 nm in suction cast ternary alloys. Compression test shows a strength of 2.8 +/- 0.1 GPa and plasticity of 4.3 +/- 0.03%. In comparison, the binary Nb-18.79 at.%Si alloy processed under identical conditions exhibit coarser length scale (300-400 nm) and brittle behavior. The fracture toughness of Ga containing suction cast alloy shows a value of 24.11 +/- 0.5 MPa root m representing a major improvement for bulk Nb-Si eutectic alloy. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present paper, the effects of non-isothermal rolling temperature and reduction in thickness followed by annealing on microstructure and mechanical properties of ZM21 magnesium alloy were investigated. The alloy rolled at four different temperatures 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C with reductions of 25%, 50% and 75%. Non-isothermal rolling resulted in grain refinement, introduction of shear bands and twins in the matrix alloy. Partial to full recrystallization was observed when the rolling temperature was above recrystallization temperature. Rolling and subsequent annealing resulted in strain-free equiaxed grains and complete disappearance of shear bands and twins. Maximum ultimate strength (345 MPa) with good ductility (14%) observed in the sample rolled at 250 degrees C with 75% reduction in thickness followed by short annealing. Recrystallization during warm/hot rolling was sluggish, but post-roll treatment gives distinct views about dynamic and static recrystallization. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid inorganic-organic framework materials exhibit unique properties that can be advantageously tuned through choice of the inorganic and organic components and by control of the crystal structure. We present a new hydrothermally prepared 3D hybrid framework, [Mn(2-methylsuccinate)](n) (1), comprising alternating 2D manganese oxide sheets and isolated MnO(6) octahedra, pillared via syn, anti-syn carboxylates. Powder magnetic characterization shows that the compound is a homospin Mn(II) ferrimagnet below 2.4 K. The easy-axis is revealed by single-crystal magnetic susceptibility studies and a magnetic structure is proposed. Anisotropic elastic moduli and hardness, observed through nanoindentation on differing crystal facets, were correlated with specific structural features. Such measurements of anisotropy are not commonly undertaken, yet allow for a more comprehensive understanding of structure-property relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were grown on Si (111) by epitaxial Stranski-Krastanow growth mode using plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN QDs was verified by the x-ray diffraction and transmission electron microscopy. Scanning tunneling microscopy has been used to probe the structural aspects of QDs. A surface bandgap of InN QDs was estimated from scanning tunneling spectroscopy (STS) I-V curves and found that it is strongly dependent on the size of QDs. The observed size-dependent STS bandgap energy shifts with diameter and height were theoretical explained based on an effective mass approximation with finite-depth square-well potential model.