975 resultados para protein function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat-shock proteins (HSPs) are currently one of the most promising targets for the development of immunotherapy against tumours and autoimmune disorders. This protein family has the capacity to activate or modulate the function of different immune system cells. They induce the activation of monocytes, macrophages and dendritic cells, and contribute to cross-priming, an important mechanism of presentation of exogenous antigen in the context of MHC class I molecules, These various immunological properties of HSP have encouraged their use in several clinical trials. Nevertheless, an important issue regarding these proteins is whether the high homology among HSPs across different species may trigger the breakdown of immune tolerance and induce autoimmune diseases. We have developed a DNA vaccine codifying the Mycobacterium leprae Hsp65 (DNAhsp65), which showed to be highly immunogenic and protective against experimental tuberculosis. Here, we address the question of whether DNAhsp65 immunization could induce pathological autoimmunity in mice. Our results show that DNAhsp65 vaccination induced antibodies that can recognize the human Hsp60 but did not induce harmful effects in 16 different organs analysed by histopathology up to 210 days after vaccination. We also showed that anti-DNA antibodies were not elicited after DNA vaccination. The results are important for the development of both HSP and DNA-based immunomodulatory agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein-calorie malnutrition produces glucose intolerance and reduced insulin release in response to glucose. Rats adapted to low- or high-protein diets show an increased resistance to the diabetogenic action of a single dose of streptozotocin or alloxan. To determine the effects of dietary protein level on pancreatic function, we measured serum glucose levels under basal conditions and during the oral glucose tolerance test (GTT) performed before and after a single dose of alloxan administered to rats fed a 25% or a 6% protein diet for a period of 8 weeks. The incidence of mild hyperglycemia (serum glucose > 250 mg/dl) was greater among the rats fed the 25% protein diet (81%) than among those fed the 6% protein diet (42%). During the GTT performed before alloxan administration the serum glucose levels of the rats fed the 6% protein diet were not found to be significantly different from those of rats fed the 25% protein diet. During the GTT performed after alloxan injection all rats showed intolerance to the substrate (serum glucose > 160 mg/dl 120 min after glucose administration) regardless of whether basal serum glucose was normal or high. In summary, alloxan was less effective in producing basal hyperglycemia in the rats fed the 6% protein diet than in those fed the 25% protein diet but caused glucose intolerance during the oral GTT in both groups. Thus, it seems that feeding a 6% protein diet to rats offers only partial protection against the toxic effects of alloxan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transthyretin and retinal-binding protein are sensitive markers of acute protein-calorie malnutrition both for early diagnosis and dietary evaluation. A preliminary study showed that retinal-binding protein is the most sensitive marker of protein-calorie malnutrition in cirrhotic patients, even those with the mild form of the disease (Child A). However, in addition to being affected by protein-calorie malnutrition, the levels of these short half-life-liver-produced proteins are also influenced by other factors of a nutritional (zinc, tryptophan, vitamin A, etc) and non-nutritional (sex, aging, hormones, renal and liver functions and inflammatory activity) nature. These interactions were investigated in 11 adult male patients (49.9 ± 9.2 years of age) with alcoholic cirrhosis (Child-Pugh grade A) and with normal renal function. Both transthyretin and retinol binding protein were reduced below normal levels in 55% of the patients, in close agreement with their plasma levels of retinal. In 67% of the patients (4/6), the reduced levels of transthyretin and retinal-binding protein were caused by altered liver function and in 50% (3/6) they were caused by protein-calorie malnutrition. Thus, the present data, taken as a whole, indicate that reduced transthyretin and retinal-binding protein levels in mild cirrhosis of the liver are mainly due to liver failure and/or vitamin A status rather than representing an isolated protein-calorie malnutrition indicator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number and degree of digestion of pollen grains in the midgut and rectum, the midgut proteolytic activity and the time of pollen grain passage through the digestive tract in the stingless bee Scaptotrigona postica (Latreille) have been analyzed. The results show similar protein requirements among larvae, nurse bees and queens, as well as between forager bees and old males, but these requirements are higher in individuals from the former groups than in those from the latter. Although protein requirements have been demonstrated to vary according to a bee's activity in the colony, they are similar among bees from different castes or sexes. These changes in feeding behavior are related to the bee's function and to less competition for nourishment among individuals of the colony. It is also noted that pollen grains took between 6 and 28 h to pass through the digestive tract. Pollen grains are irregularly accumulated in the various regions of the midgut, which may reflect functional differentiation throughout the midgut. © 2001 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twelve-day-old and 25-day-old Apis mellifera workers were treated or not treated with juvenile hormone at the moment of emergence and reared in the colony without brood. Having the brood interference apart, the hormone effect on the hypopharyngeal glands protein expression was determined through the electrophoretical protein profiles of the both groups of bees. In those conditions, the hormone induced changes that were different from the control. Protein bands of 66 and 48 kDa were intensified in the 12-day-old bees, whereas band of 42 kDa was reduced in the 25-day-old bees. That indicated a different effect of the juvenile hormone in the function of bee aging, which promoted a glandular protein activation in the young bees and, in contrast, an inhibitory action in the 25-day-old bees workers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Firefly luciferases are called pH-sensitive because their bioluminescence spectra display a typical red-shift at acidic pH, higher temperatures, and in the presence of heavy metal cations, whereas other beetle luciferases (click beetles and railroadworms) do not, and for this reason they are called pH-insensitive. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. This subject is revised in view of recent results. Some substitutions of amino-acid residues influencing pH-sensitivity in firefly luciferases have been identified. Sequence comparison, site-directed mutagenesis and modeling studies have shown a set of residues differing between pH-sensitive and pH-insensitive luciferases which affect bioluminescence colors. Some substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). A network of hydrogen bonds and salt bridges involving the residues N229-S284-E311-R337 was found to be important for affecting bioluminescence colors. It is suggested that these structural elements may affect the benzothiazolyl side of the luciferin-binding site affecting bioluminescence colors. Experimental evidence suggest that the residual red light emission in pH-sensitive luciferases could be a vestige that may have biological importance in some firefly species. Furthermore, the potential utility of pH-sensitivity for intracellular biosensing applications is considered. © The Royal Society of Chemistry and Owner Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, KM values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging. © The Royal Society of Chemistry and Owner Societies 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of this study was to evaluate the changes in testicular function of rats due to cigarette smoke exposure and the possible mechanism by which zinc protects against these alterations. Methods: MaleWistar rats (60 days old) were randomly divided into 3 groups: control (G1, n = 10); exposed to cigarette smoke (G2, n = 10; 20 cigarettes/day/9 weeks) and exposed to cigarette smoke and supplemented with zinc (G3, n = 8; 20 cigarettes/day/9 weeks; 20 mg/kg zinc chloride daily for 9 weeks, by gavage). After the treatment period, the animals were euthanized, and materials were collected for analyses. Results: G2 rats showed a reduction in body mass; impaired sperm concentration, motility, morphology and vitality; and increased malonaldehyde and thiol group levels and superoxide dismutase activity as compared to G1. Zinc prevented the reduction of sperm concentration and the excessive increase of lipid peroxidation and induced an increase in plasma testosterone levels, wet weight of testis and thiol group concentration. Conclusions: Exposure to cigarette smoke led to harmful effects on testicular function at least partially due to the exacerbation of oxidative stress. Supplementary zinc had an important modulator/protector effect on certain parameters. The mechanism of zinc protection can be through an increase of SH concentration. Thus, zinc supplementation may be a promising addition to conventional treatments for male infertility related to smoking. Copyright © 2012 by Institute of Pharmacology Polish Academy of Sciences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein-protein interactions (PPIs) are essential for understanding the function of biological systems and have been characterized using a vast array of experimental techniques. These techniques detect only a small proportion of all PPIs and are labor intensive and time consuming. Therefore, the development of computational methods capable of predicting PPIs accelerates the pace of discovery of new interactions. This paper reports a machine learning-based prediction model, the Universal In Silico Predictor of Protein-Protein Interactions (UNISPPI), which is a decision tree model that can reliably predict PPIs for all species (including proteins from parasite-host associations) using only 20 combinations of amino acids frequencies from interacting and non-interacting proteins as learning features. UNISPPI was able to correctly classify 79.4% and 72.6% of experimentally supported interactions and non-interacting protein pairs, respectively, from an independent test set. Moreover, UNISPPI suggests that the frequencies of the amino acids asparagine, cysteine and isoleucine are important features for distinguishing between interacting and non-interacting protein pairs. We envisage that UNISPPI can be a useful tool for prioritizing interactions for experimental validation. © 2013 Valente et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accumulating evidence demonstrates that chronic inflammation plays an important role in heart hypertrophy and cardiac diseases. However, the fine-tuning of cellular and molecular mechanisms that connect inflammatory process and cardiac diseases is still under investigation. Many reports have demonstrated that the overexpression of the cyclooxygenase-2 (COX-2), a key enzyme in the conversion of arachidonic acid to prostaglandins and other prostanoids, is correlated with inflammatory processes. Increased level of prostaglandin E2 was also found in animal model of left ventricle of hypertrophy. Based on previous observations that demonstrated a regulatory loop between COX-2 and the RNA-binding protein CUGBP2, we studied cellular and molecular mechanisms of a pro-inflammatory stimulus in a cardiac cell to verify if the above two molecules could be correlated with the inflammatory process in the heart. A cellular model of investigation was established and H9c2 was used.We also demonstrated a regulatory connection between COX-2 and CUGBP2 in the cardiac cells. Based on a set of different assays including gene silencing and fluorescence microscopy, we describe a novel function for the RNA-binding protein CUGBP2 in controlling the pro-inflammatory stimulus: subcellular trafficking of messenger molecules to specific cytoplasmic stress granules to maintain homeostasis. © 2013 International Federation for Cell Biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The ZNF706 gene encodes a protein that belongs to the zinc finger family of proteins and was found to be highly expressed in laryngeal cancer, making the structure and function of ZNF706 worthy of investigation. In this study, we expressed and purified recombinant human ZNF706 that was suitable for structural analysis in Escherichia coli BL21(DH3). Findings. ZNF706 mRNA was extracted from a larynx tissue sample, and cDNA was ligated into a cloning vector using the TOPO method. ZNF706 protein was expressed according to the E. coli expression system procedures and was purified using a nickel-affinity column. The structural qualities of recombinant ZNF706 and quantification alpha, beta sheet, and other structures were obtained by spectroscopy of circular dichroism. ZNF706's structural modeling showed that it is composed of α-helices (28.3%), β-strands (19.4%), and turns (20.9%), in agreement with the spectral data from the dichroism analysis. Conclusions: We used circular dichroism and molecular modeling to examine the structure of ZNF706. The results suggest that human recombinant ZNF706 keeps its secondary structures and is appropriate for functional and structural studies. The method of expressing ZNF706 protein used in this study can be used to direct various functional and structural studies that will contribute to the understanding of its function as well as its relationship with other biological molecules and its putative role in carcinogenesis. © 2013 Colombo et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. © 2013 Wiley Periodicals, Inc.