987 resultados para protein fractions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ever since lysozyme was discovered by Fleming in 1922, this protein has emerged as a model for investigations on protein structure and function. Over the years, several high-resolution structures have yielded a wealth of structural data on this protein. Extensive studies on folding of lysozyme have shown how different regions of this protein dynamically interact with one another. Data is also available from numerous biotechnological studies wherein lysozyme has been employed as a model protein for recovering active recombinant protein from inclusion bodies using small molecules like L-arginine. A variety of conditions have been developed in vitro to induce fibrillation in hen lysozyme. They include (a) acidic pH at elevated temperature, (b) concentrated solutions of ethanol, (c) moderate concentrations of guanidinium hydrochloride at moderate temperature, and (d) alkaline pH at room temperature. This review aims to bring together similarities and differences in aggregation mechanisms, morphology of aggregates, and related issues that arise using the different conditions mentioned above to improve our understanding. The alkaline pH condition (pH 12.2), discovered and studied extensively in our lab, shall receive special attention. More than a decade ago, it was revealed that mutations in human lysozyme can cause accumulation of large quantities of amyloid in liver, kidney, and other regions of gastrointestinal tract. Understanding the mechanism of lysozyme aggregation will probably have therapeutic implications for the treatment of systemic nonneuropathic amyloidosis. Numerous studies have begun to focus attention on inhibition of lysozyme aggregation using antibody or small molecules. The enzymatic activity of lysozyme presents a convenient handle to quantify the native population of lysozyme in a sample where aggregation has been inhibited. The rich information available on lysozyme coupled with the multiple conditions that have been successful in inducing/inhibiting its aggregation in vitro makes lysozyme an ideal model protein to investigate amyloidogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural alignments are the most widely used tools for comparing proteins with low sequence similarity. The main contribution of this paper is to derive various kernels on proteins from structural alignments, which do not use sequence information. Central to the kernels is a novel alignment algorithm which matches substructures of fixed size using spectral graph matching techniques. We derive positive semi-definite kernels which capture the notion of similarity between substructures. Using these as base more sophisticated kernels on protein structures are proposed. To empirically evaluate the kernels we used a 40% sequence non-redundant structures from 15 different SCOP superfamilies. The kernels when used with SVMs show competitive performance with CE, a state of the art structure comparison program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beta-hydroxyacyl-acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) catalyzes the third and important reaction of the fatty acid elongation cycle. The crystal structure of PfFabZ is available in hexameric (active) and dimeric (inactive) forms. However, PfFabZ has not been crystallized with any bound inhibitors until now. We have designed a new condition to crystallize PfFabZ with its inhibitors bound in the active site, and determined the crystal structures of four of these complexes. This is the first report on any FabZ enzyme with active site inhibitors that interact directly with the catalytic residues. Inhibitor binding not only stabilized the substrate binding loop but also revealed that the substrate binding tunnel has an overall shape of ``U''. In the crystal structures, residue Phe169 located in the middle of the tunnel was found to be in two different conformations, open and closed. Thus, Phe169, merely by changing its side chain conformation, appears to be controlling the length of the tunnel to make it suitable for accommodating longer substrates. The volume of the substrate binding tunnel is determined by the sequence as well as by the conformation of the substrate binding loop region and varies between organisms for accommodating fatty acids of different chain lengths. This report on the crystal structures of the complexes of PfFabZ provides the structural basis of the inhibitory mechanism of the enzyme that could be used to improve the potency of inhibitors against an important component of fatty acid synthesis common to many infectious organisms. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the synthesis and characterization of a series of N-methylimidazole-based thiourea and selenourea derivatives are described. The new compounds were also studied for their ability to inhibit peroxynitrite (PN)- and peroxidase-mediated nitration of protein tyrosine residues. It has been observed that the selenourea derivatives are more efficient than the thiourea-based compounds in the inhibition of protein nitration. The higher activity of selenoureas as compared to that of the corresponding thioureas can be ascribed to the zwitterionic nature of the selenourea moiety. Single crystal X-ray diffraction studies on some of the thiourea and selenourea derivatives reveal that the C S bonds in thioureas possess more of double bond character than the C=Se bonds in the corresponding selenoureas. Therefore, the selenium compounds can react with PN or hydrogen peroxide much faster than their sulfur analogues. The reactions of thiourea and selenourea derivatives with PN or hydrogen peroxide produce the corresponding sulfinic or seleninic acid derivatives, which upon elimination of sulfurous/selenous acids produce the corresponding N-methylimdazole derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HCV NS3 protein plays a central role in viral polyprotein processing and RNA replication. We demonstrate that the NS3 protease (NS3(pro)) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding. More importantly, NS3(pro) binding to the SLIV hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, resulting in inhibition of HCV-IRES activity. Although overexpression of both NS3(pro) as well as the full length NS3 protein decreased the level of HCV IRES mediated translation, replication of HCV replicon RNA was enhanced significantly. These observations suggest that the NS3(pro) binding to HCV IRES reduces translation in favor of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might regulate the molecular switch from translation to replication of HCV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary microcephaly is an autosomal recessive disorder characterized by smaller than normal brain size and mental retardation. It is genetically heterogeneous with seven loci: MCPH1-MCPH7. We have previously reported genetic analysis of 35 families, including the identification of the MCPH7 gene STIL. Of the 35 families, three families showed linkage to the MCPH2 locus. Recent whole-exome sequencing studies have shown that the WDR62 gene, located in the MCPH2 candidate region, is mutated in patients with severe brain malformations. We therefore sequenced the WDR62 gene in our MCPH2 families and identified two novel homozygous protein truncating mutations in two families. Affected individuals in the two families had pachygyria, microlissencephaly, band heterotopias, gyral thickening, and dysplastic cortex. Using immunofluorescence study, we showed that, as with other MCPH proteins, WDR62 localizes to centrosomes in A549, HepG2, and HaCaT cells. In addition, WDR62 was also localized to nucleoli. Bioinformatics analysis predicted two overlapping nuclear localization signals and multiple WD-40 repeats in WDR62. Two other groups have also recently identified WDR62 mutations in MCPH2 families. Our results therefore add further evidence that WDR62 is the MCPH2 gene. The present findings will be helpful in genetic diagnosis of patients linked to the MCPH2 locus.