978 resultados para pre-salt basin
Resumo:
As a means of characterizing the diffusion parameters of fiber reinforced polymer (FRP) composites within a relatively short time frame, the potential use of short term tests on epoxy films to predict the long-term behavior is investigated. Reference is made to the literature to assess the effectiveness of Fickian and anomalous diffusion models to describe solution uptake in epoxies. The influence of differing exposure conditions on the diffusion in epoxies, in particular the effect of solution type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 20 or 60°C, are also presented. It was found that the type of solution did not significantly influence the diffusion behavior at 20°C and that the mass uptake profile was anomalous. Exposure to 60°C accelerated the initial diffusion behavior and appeared to raise the level of saturation. In spite of the accelerated approach, conclusive values of uptake at saturation remained elusive even at an exposure period of 5 years. This finding questions the viability of using short-term thin film results to predict the long-term mechanical performance of FRP materials. © 2013 Wiley Periodicals, Inc.
Resumo:
Scytonema javanicum (Kutz.) Born et Flah (cyanobacterium) is one of the species distributed widely in the crust of desert soils regularly subjected to severe water stress. To investigate the response of the species to salt stress, many physiological and biochemical parameters, including growth rate, ratio of variable fluorescence to maximum fluorescence (Fv/Fm), reactive oxidative species (ROS), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD), were determined in culture. The results showed that 50 mM NaCl inhibited growth and Fv/Fm in the medium BG-110, and that the inhibition was maximum after 1-2 days' exposure to salt stress; 50 mM NaCl also increased the contents of ROS and MDA in treated cells, which suggests that salt stress may lead to oxidative damage and lipid peroxidation in the alga. Further, changes in the antioxidative enzymes SOD and CAT in the treated alga were consistent with changes in ROS and MDA at certain extent. These observations suggest that oxidative stress resulting from salt stress in S. javanicum could result in the production of antioxidative enzymes to counteract the oxidative damage, and the enzymes may contribute to the ability of S. javanicum to survive the adverse desert environment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Experimental and field studies were conducted to evaluate the effects of NH4+ enrichment on growth and distribution of the submersed macrophyte, Vallisneria natans L, in lakes of the Yangtze River in China, based on the balance between free amino acids (FAA) and soluble carbohydrates (SC) in the plant tissue. Increase of NH4+ rather than NO3- concentrations in the water column caused FAA accumulation and SC depletion of the plant. The plant showed a unimodal pattern of biomass distribution along both FAA/SC ratios and external NH4+ concentrations, indicating that a moderate NH4-N concentration (< 0.3 mg L-1) benefited the plant, whereas the high NH4-N concentration (> 0.56 mg L-1) eliminated the plant completely. Therefore, 0.56 mg NH4-N mg L-1 in the water column was taken as the upper limit for V. natans in lakes of the Yangtze River basin. The mesocosm experiment showed that at a high external NH4-N (0.81 mg L-1), V. natans failed to propagate with a loss of half SC content (5 mg g(-1) DW) in the rhizomes, indicating that the consumption of carbohydrates for detoxification of excess NH4+ into non-toxic FAA significantly diminished carbohydrate supply to the rhizomes. This might consequently inhibit the vegetative reproduction of the plant, and also might be an important cause for the decline and disappearance of the plant with eutrophication. The present study for the first time reports substantial ecophysiological evidences for NH4+ stress to submersed macrophytes, and indicates that NH4+ toxicity arising from eutrophication probably plays a key role in the deterioration of submersed macrophytes like V. natans.
Resumo:
Garra rotundinasus, a new cyprinid species from the upper Irrawaddy River basin in Yunnan, China, is herein described. It shares with G. gravelyi the presence of a snout having a poorly developed proboscis represented by a truncate area in front of the nostrils, a character distinguishing both from all other Southeast Asian and Chinese congeners. The two species are distinct in coloration, morphometric and meristic characters. The sympatrically occurring G. tengchongensis is very similar to G. rotundinasus in possessing 36-37 perforated lateral line scales, 5 or 6 scales between the anus and anal-fin origin, and an anterior position of the anus (anus to anal distance 32.1-51.8% of pelvic to anal distance). Garra rotundinasus can be differentiated from G. tengehongensis in having a more slender caudal peduncle, a larger disc and no dark central band on the dorsal fin.
Resumo:
The effects of salt stress on carbohydrate metabolism in Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crusts, were investigated in the present study. Extracellular total carbohydrates and exopolysaccharides (EPS) in the culture medium produced by M. vaginatus increased significantly during the growth phase and reached a maximum during the stationary phase. The production of extracellular carbohydrates also significantly increased under higher salt concentrations, which was attributed to an increase in low molecular weight carbohydrates. In the presence of NaCl, the production of cellular total carbohydrates decreased and photosynthetic activity was impaired, whereas cellular reducing sugars, water-soluble sugars and sucrose content and sucrose phosphate synthase activity increased, reaching a maximum in the presence of 200 mmol/L NaCl. These parameters were restored to original levels when the algae were transferred to a non-saline medium. Sodium and K+ concentrations of stressed cells decreased significantly and H+-ATPase activity increased after the addition of exogenous sucrose or EPS. The results suggest that EPS and sucrose are synthesized to maintain the cellular osmotic equilibrium between the intra- and extracellular environment, thus protecting algal cells from osmotic damage, which was attributed to the selective exclusion of cellular Na+ and K+ by H+-ATPase.
Resumo:
In this paper, the photochemical reduction process of Hg (II) in aqueous solution containing ferric iron and oxalate (Ox) has been studied. Under the radiation of a low-pressure mercury lamp (lambda = 253.7 nm, 8W), Fe(III)-oxalate complexes undergo photolysis to produce ferrous ions and other organic reductive species, which reduce Hg(II) subsequently. For 0.1 mg/L Hg (II), the photoreduction efficiency is comparatively higher in the solution at pH 5.0 than that over the range of 3.0 similar to 8.0. The photoreduction efficiency of Ho (II) in aqueous solution increases with increasing, initial concentration of ferric ions from 0.02 mmol/L to 0.2 mmol/L and initial concentration of oxalate from 0.96 mmol/L to 4.8 mmol/L and then gradually approaches to a steady state. CH3OH also contributes the reduction of Hg (II). We investigate the increase of the ferric, oxalate and CH3OH concentrations resulting from the increase of reduction efficiency of Hg (II). It can be seen that ferrous ions and other reactive species are reductants of Hg (II), and the reaction product with oxalate is mainly volatile metallic mercury.
Resumo:
One of the limits on the maximum fuel efficiency benefit to be gained from turbocharged, downsized gasoline engines is the occurrence of pre-ignitions at low engine speed. These pre-ignitions may lead to high pressures and extreme knock (megaknock or superknock) which can cause severe engine damage. Though the mechanism leading to megaknock is not completely resolved, pre-ignitions are thought to arise from local autoignition of areas in the cylinder which are rich in low ignition delay "contaminants" such as engine oil and/or heavy ends of gasoline. These contaminants are introduced to the combustion chamber at various points in the engine cycle (e.g. entering from the top land crevice during blow-down or washed from the cylinder walls during DI wall impingement). This paper presents results from tests in which model "contaminants", consisting of engine lubricant base stocks, base stocks mixed with fuel and base stocks mixed with one or more additives were injected directly into a test engine to determine their propensity to ignite. The ignition tendency was found to be lower for less reactive base stocks and for base stocks mixed with certain additives. Further, when small amounts of fuel were mixed with relatively non-ignitive lubricant base stocks the ignition tendency was found to increase significantly. These results may guide development of new lubricants which could be used to reduce megaknock in downsized engines. Copyright © 2014 SAE International.
Resumo:
The type species of the cyprinid genus Sinilabeo was misidentified as Varicorhinus tungting, and the species under the generic name belong to Bangana and Linichthys. In order to make Sinilabeo available, its type species is fixed under Article 70.3.2 of the 1999 edition of the International Code of Zoological Nomenclature as S. hummeli, a new species herein described from the upper Yangtze River basin in Chongqing City and Sichuan Province, South China. A re-definition is provided for Sinilabeo. It resembles Qianlabeo in having an upper lip only present in the side of the upper jaw and uncovered by the rostral fold, but missing in the median part of the upper jaw that, instead, bears a thin, flexible, and cornified sheath, covered by the rostral fold, a character that can separate both from all other existing genera of Asian labeonins. However, Sinilabeo is distinguished from Qianlabeo in the presence of a rostral fold disconnected from the lower lip; a broadly interrupted postlabial groove only restricted to the side of the lower jaw; an upper lip, which is only present in the side of the upper separated from it by a groove; 9-10 branched dorsal-fin rays; two pairs of tiny maxillary barbels.
Resumo:
Amplified fragment length polymorphism (AFLP) was used to analyse the genetic structure of 45 individuals of Gymnocypris przewalskii (Kessler, 1876), an endangered and state-protected rare fish species, from three areas [the Heima (HM), Buha (BH) and Shaliu rivers (SL), all draining into Qinghai Lake]. A total of 563 polymorphic loci were detected. The HM, BH and SL populations have 435, 433 and 391 loci, respectively (Zhu and Wu, 1975), which account for 77.26%, 76.91% and 69.45% of the total number of polymorphic loci of each population, respectively. The Nei indices of genetic diversities (H) of the three populations were calculated to be 0.2869 (HM), 0.2884 (BH) and 0.2663 (SL), respectively. Their Shannon informative indices are 0.4244, 0.4251 and 0.3915, respectively. Research results show that the mean genetic distance between HM and BH is the smallest (0.0511), between BH and SL is the second shortest (0.0608), and between HM and SL is the largest (0.0713), with the mean genetic distance among the three populations being over 0.05. Data mentioned above indicate that the three populations have a certain genetic differentiation. The total genetic diversity (H-t = 0.3045) and the mean value of genetic diversity within the population (H-s = 0.2786) indicate that the variations have mainly come from within the population.
Resumo:
Sinibrama longianalis, a new cyprinid species from the Wu Jiang (upper Yangtze River basin) in Guizhou, China is distinguished from other congeners in having the following combination of characters: last simple dorsal-fin ray well-ossified; a snout shorter than eye diameter; eye diameter 27.1-31.6% HL; lateral line scales 56-64 (mean 59.5); circumpeduncular scales 18-21; anal fin with 24-28 (mean 25.2) branched rays, originating opposite to or slightly in advance of posterior end of dorsal-fin base, basal length 27.0-31.1% SL; pectoral fin reaching to or slightly beyond pelvic-fin insertion.
Resumo:
Microcoleus vaginatus isolated from a desert algal crust of Shapotou was cultured in BG-11 medium containing 0.2mol l(-1) NaCl or 0.2mol l(-1) NaCl plus 100mg l(-1) sucrose, extracellular polymeric substances (EPS) or hot water-soluble polysaccharides (HWP), respectively. Photosynthetic oxygen evolution rates, photosystem 11 activity (Fv/Fm) and dark respiration of NaCl-stressed cells were enhanced significantly by the added sucrose or EPS under salt stress conditions (0.2mol l(-1) NaCl). Compared with cells treated with salt alone, sodium contents in cells reduced significantly; the content of cellular total carbohydrate did not change, and intracellular sucrose, water-soluble sugar increased significantly following the addition of exogenous carbohydrates. Sucrose synthase (SS) activity of NaCl-stressed cells increased following the addition of sucrose, and sucrose phosphate synthase (SPS) activity of NaCl-stressed cells increased following the addition of exogenous sucrose, EPS or HWP compared with cells stressed with NaCl only. The results suggested that the extruded EPS might be re-absorbed by cells of M. vaginatus as carbon source, they could increase salt tolerance of M. vaginatus through the changes of carbohydrate metabolism and the selective uptake of sodium ions. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Garra tengchongensis, a new cyprinid species from the upper Irrawaddy River basin in Tengchong county, Yunnan province, China, is differentiated from all other Chinese and Southeast Asian Garra species except G. kempi by having a combination of the following characters: two pairs of barbels, no proboscis on snout, 12 circumpeduncular scales and 37-42 lateral line scales. Garra tengchongensis is distinguished from G. kempi in having a cylindrical anterior body, a deeper body, a smaller mental adhesive disc, a scaled breast and belly, and a blunt snout.
Resumo:
Members of the SR family of pre-mRNA splicing factors are phosphoproteins that share a phosphoepitope specifically recognized by monoclonal antibody (mAb) 104. Recent studies have indicated that phosphorylation may regulate the activity and the intracellular localization of these splicing factors. Here, we report the purification and kinetic properties of SR protein kinase 1 (SRPK1), a kinase specific for SR family members. We demonstrate that the kinase specifically recognizes the SR domain, which contains serine/arginine repeats. Previous studies have shown that dephosphorylated SR proteins did not react with mAb 104 and migrated faster in SDS gels than SR proteins from mammalian cells. We show that SRPK1 restores both mobility and mAB 104 reactivity to a SR protein SF2/ASF (splicing factor 2/alternative splicing factor) produced in bacteria, suggesting that SRPK1 is responsible for the generation of the mAb 104-specific phosphoepitope in vivo. Finally, we have correlated the effects of mutagenesis in the SR domain of SF2/ASF on splicing with those on phosphorylation of the protein by SRPK1, suggesting that phosphorylation of SR proteins is required for splicing.