945 resultados para polyethylene glycol 6000
Resumo:
A growing number of studies have identified cleaners as a group at risk for adverse health effects of the skin and the respiratory tract. Chemical substances present in cleaning products could be responsible for these effects. Currently, only limited information is available about irritant and health hazardous chemical substances found in cleaning products. We hypothesized that chemical substances present in cleaning products are known health hazardous substances that might be involved in adverse health effects of the skin and the respiratory tract. We performed a systematic review of cleaning products used in the Swiss cleaning sector. We surveyed Swiss professional cleaning companies (n = 1476) to identify the most used products (n = 105) for inclusion. Safety data sheets (SDSs) were reviewed and hazardous substances present in cleaning products were tabulated with current European and global harmonized system hazard labels. Professional cleaning products are mixtures of substances (arithmetic mean 3.5 +/- 2.8), and more than 132 different chemical substances were identified in 105 products. The main groups of chemicals were fragrances, glycol ethers, surfactants, solvents; and to a lesser extent, phosphates, salts, detergents, pH-stabilizers, acids, and bases. Up to 75% of products contained irritant (Xi), 64% harmful (Xn) and 28% corrosive (C) labeled substances. Hazards for eyes (59%) and skin (50%), and hazards by ingestion (60%) were the most reported. Cleaning products potentially give rise to simultaneous exposures to different chemical substances. As professional cleaners represent a large workforce, and cleaning products are widely used, it is a major public health issue to better understand these exposures. The list of substances provided in this study contains important information for future occupational exposure assessment studies.
Resumo:
Barbiturates are regularly used as an anesthetic for animal experimentation and clinical procedures and are frequently provided with solubilizing compounds, such as ethanol and propylene glycol, which have been reported to affect brain function and, in the case of (1)H NMR experiments, originate undesired resonances in spectra affecting the quantification. As an alternative, thiopental can be administrated without any solubilizing agents. The aim of the study was to investigate the effect of deep thiopental anesthesia on the neurochemical profile consisting of 19 metabolites and on glucose transport kinetics in vivo in rat cortex compared with alpha-chloralose using localized (1)H NMR spectroscopy. Thiopental was devoid of effects on the neurochemical profile, except for the elevated glucose at a given plasma glucose level resulting from thiopental-induced depression of glucose consumption at isoelectrical condition. Over the entire range of plasma glucose levels, steady-state glucose concentrations were increased on average by 48% +/- 8%, implying that an effect of deep thiopental anesthesia on the transport rate relative to cerebral glucose consumption ratio was increased by 47% +/- 8% compared with light alpha-chloralose-anesthetized rats. We conclude that the thiopental-induced isoelectrical condition in rat cortex significantly affected glucose contents by depressing brain metabolism, which remained substantial at isoelectricity.
Resumo:
Background Multiple sclerosis (MS) is a demyelinating disease of the central nervous system, which mainly affects young adults. In Finland, approximately 2500 out of 6000 MS patients have relapsing MS and are treated with disease modifying drugs (DMD): interferon- β (INF-β-1a or INF-β-1b) and glatiramer acetate (GA). Depending on the used IFN-β preparation, 2 % to 40 % of patients develop neutralizing antibodies (NAbs), which abolish the biological effects of IFN-β, leading to reduced clinical and MRI detected efficacy. According to the Finnish Current Care Guidelines and European Federation of Neurological Societis (EFNS) guidelines, it is suggested tomeasure the presence of NAbs during the first 24 months of IFN-β therapy. Aims The aim of this thesis was to measure the bioactivity of IFN-β therapy by focusing on the induction of MxA protein (myxovirus resistance protein A) and its correlation to neutralizing antibodies (NAb). A new MxA EIA assay was set up to offer an easier and rapid method for MxA protein detection in clinical practice. In addition, the tolerability and safety of GA were evaluated in patients who haddiscontinued IFN-β therapy due to side effects and lack of efficacy. Results NAbs developed towards the end of 12 months of treatment, and binding antibodies were detectable before or parallel with them. The titer of NAb correlated negatively with the amount of MxA protein and the mean values of preinjection MxA levels never returned to true baseline in NAb negative patients, but tended to drop in the NAb positive group. The test results between MxA EIA and flow cytometric analysis showed significant correlation. GA reduced the relapse rate and was a safe and well-tolerated therapy in IFN-β-intolerant MS patients. Conclusions NAbs inhibit the induction of MxA protein, which can be used as a surrogate marker of the bioactivity of IFN-β therapy. Compared to flow cytometricanalysis and NAb assay, MxA-EIA seemed to be a sensitive and more practical method in clinical use to measure the actual bioactivity of IFN-β treatment, which is of value also from a cost-effective perspective.
Resumo:
Introduction: The posterior inclination of the tibial component is an important factor that can affect the success of total knee arthroplasty. It can reduce the posterior impingement and thus increase the range of flexion, but it may also induce instability in flexion, anterior impingement between the polyethylene of postero-stabilizing knee prosthesis, and anterior conflict with the cortical bone and the stem. Although the problem is identified, there is still a debate on the ideal inclination angle and the surgical technique to avoid an excessive posterior inclination. The aim of this study was to predict the effect of a posterior inclination of the tibial component on the contact pattern on the tibial insert, using a numerical musculoskeletal model of the knee joint. Methods: A 3D finite element model of the knee joint was developed to simulate an active and loaded squat movement after total knee arthroplasty. Flexion was actively controlled by the quadriceps muscle and muscle activations were estimated from EMG data and were synchronized by a feedback algorithm. Two inclinations of the tibial tray were considered: a posterior inclination of 0° or 10°. During the entire range of flexion, the following quantities were calculated: the tibiofemoral and patello-femoral contact force, and the contact pattern on polyethylene insert. The antero-posterior displacement of the contact pattern was also measured. Abaqus 6.7 was used for all analyses. Results: The tibio-femoral and patello-femoral contact forces increased during flexion and reached respectively 4 and 7 BW (bodyweight) at 90° of flexion. They were slightly affected by the inclination of the tibial tray. Without posterior inclination, the contact pattern on the tibial insert remained centered. The contact pressure was lower than 5 MPa below 60° of flexion, but exceeded 20 MPa at 90° of flexion. The posterior inclination displaced the contact point posteriorly by 2 to 4 mm. Conclusion: The inclination of the tibial tray displaced the contactpattern towards the posterior border of the tibial insert. However, even for 10° of inclination, the contact center remained far from the posterior border (12 mm). There was no instability predicted for this movement.
Resumo:
BACKGROUND: The frequency of CT procedures has registered a significant increase over the last decade, which led at the international level to an increasing concern on the radiological risk associated with the use of CT especially in paediatrics. This work aimed at investigating the use of computed tomography in Switzerland, following the evolution of CT frequency and dose data over a decade and comparing it to data reported in other countries. METHODS: The frequency and dose data related to CT are obtained by means of a nationwide survey. National frequencies were established by projecting the collected data, using the ratio of the number of CT units belonging to the respondents to the total number of CT units in the country. The effective doses per examination were collected during an auditing campaign. RESULTS: In 2008 about 0.8 Million CT procedures (~ 100 CT examinations / 1000 population) were performed in the country, leading to a collective effective dose of more than 6000 man.Sv (0.8 mSv/caput). In a decade the frequency of CT examinations averaged over the population and the associated average effective dose per caput increased by a factor of 2.2 and 2.9 respectively. CONCLUSIONS: Although the contribution of CT to the total medical X-rays is 6% in terms of the frequency, it represents 68% in terms of the collective effective dose. These results are comparable to those reported in a number of countries in Europe and America with similar health level.
Resumo:
Two types of hydrogel microspheres have been developed. Fast ionotropic gelation of sodium alginate (Na-alg) in the presence of calcium ions was combined with slow covalent cross-linking of poly(ethylene glycol) (PEG) derivatives. For the first type, the fast obtainable Ca-alg hydrogel served as spherical matrix for the simultaneously occurring covalent cross-linking of multi-arm PEG derivative. A two-component interpenetrating network was formed in one step upon extruding the mixture of the two polymers into the gelation bath. For the second type, heterobifunctional PEG was grafted onto Na-alg prior to gelation. Upon extrusion of the polymer solution into the gelation bath, fast Ca-alg formation ensured the spherical shape and was accompanied by cross-linker-free covalent cross-linking of the PEG side chains. Thus, one-component hydrogel microspheres resulted. We present the physical properties of the hydrogel microspheres and demonstrate the feasibility of cell microencapsulation for both types of polymer networks.
Resumo:
Recent findings suggest an association between exposure to cleaning products and respiratory dysfunctions including asthma. However, little information is available about quantitative airborne exposures of professional cleaners to volatile organic compounds deriving from cleaning products. During the first phases of the study, a systematic review of cleaning products was performed. Safety data sheets were reviewed to assess the most frequently added volatile organic compounds. It was found that professional cleaning products are complex mixtures of different components (compounds in cleaning products: 3.5 ± 2.8), and more than 130 chemical substances listed in the safety data sheets were identified in 105 products. The main groups of chemicals were fragrances, glycol ethers, surfactants, solvents; and to a lesser extent phosphates, salts, detergents, pH-stabilizers, acids, and bases. Up to 75% of products contained irritant (Xi), 64% harmful (Xn) and 28% corrosive (C) labeled substances. Hazards for eyes (59%), skin (50%) and by ingestion (60%) were the most reported. Monoethanolamine, a strong irritant and known to be involved in sensitizing mechanisms as well as allergic reactions, is frequently added to cleaning products. Monoethanolamine determination in air has traditionally been difficult and air sampling and analysis methods available were little adapted for personal occupational air concentration assessments. A convenient method was developed with air sampling on impregnated glass fiber filters followed by one step desorption, gas chromatography and nitrogen phosphorous selective detection. An exposure assessment was conducted in the cleaning sector, to determine airborne concentrations of monoethanolamine, glycol ethers, and benzyl alcohol during different cleaning tasks performed by professional cleaning workers in different companies, and to determine background air concentrations of formaldehyde, a known indoor air contaminant. The occupational exposure study was carried out in 12 cleaning companies, and personal air samples were collected for monoethanolamine (n=68), glycol ethers (n=79), benzyl alcohol (n=15) and formaldehyde (n=45). All but ethylene glycol mono-n-butyl ether air concentrations measured were far below (<1/10) of the Swiss eight hours occupational exposure limits, except for butoxypropanol and benzyl alcohol, where no occupational exposure limits were available. Although only detected once, ethylene glycol mono-n-butyl ether air concentrations (n=4) were high (49.5 mg/m3 to 58.7 mg/m3), hovering at the Swiss occupational exposure limit (49 mg/m3). Background air concentrations showed no presence of monoethanolamine, while the glycol ethers were often present, and formaldehyde was universally detected. Exposures were influenced by the amount of monoethanolamine in the cleaning product, cross ventilation and spraying. The collected data was used to test an already existing exposure modeling tool during the last phases of the study. The exposure estimation of the so called Bayesian tool converged with the measured range of exposure the more air concentrations of measured exposure were added. This was best described by an inverse 2nd order equation. The results suggest that the Bayesian tool is not adapted to predict low exposures. The Bayesian tool should be tested also with other datasets describing higher exposures. Low exposures to different chemical sensitizers and irritants should be further investigated to better understand the development of respiratory disorders in cleaning workers. Prevention measures should especially focus on incorrect use of cleaning products, to avoid high air concentrations at the exposure limits. - De récentes études montrent l'existence d'un lien entre l'exposition aux produits de nettoyages et les maladies respiratoires telles que l'asthme. En revanche, encore peu d'informations sont disponibles concernant la quantité d'exposition des professionnels du secteur du nettoyage aux composants organiques volatiles provenant des produits qu'ils utilisent. Pendant la première phase de cette étude, un recueil systématique des produits professionnels utilisés dans le secteur du nettoyage a été effectué. Les fiches de données de sécurité de ces produits ont ensuite été analysées, afin de répertorier les composés organiques volatiles les plus souvent utilisés. Il a été mis en évidence que les produits de nettoyage professionnels sont des mélanges complexes de composants chimiques (composants chimiques dans les produits de nettoyage : 3.5 ± 2.8). Ainsi, plus de 130 substances listées dans les fiches de données de sécurité ont été retrouvées dans les 105 produits répertoriés. Les principales classes de substances chimiques identifiées étaient les parfums, les éthers de glycol, les agents de surface et les solvants; dans une moindre mesure, les phosphates, les sels, les détergents, les régulateurs de pH, les acides et les bases ont été identifiés. Plus de 75% des produits répertoriés contenaient des substances décrites comme irritantes (Xi), 64% nuisibles (Xn) et 28% corrosives (C). Les risques pour les yeux (59%), la peau (50%) et par ingestion (60%) était les plus mentionnés. La monoéthanolamine, un fort irritant connu pour être impliqué dans les mécanismes de sensibilisation tels que les réactions allergiques, est fréquemment ajouté aux produits de nettoyage. L'analyse de la monoéthanolamine dans l'air a été habituellement difficile et les échantillons d'air ainsi que les méthodes d'analyse déjà disponibles étaient peu adaptées à l'évaluation de la concentration individuelle d'air aux postes de travail. Une nouvelle méthode plus efficace a donc été développée en captant les échantillons d'air sur des filtres de fibre de verre imprégnés, suivi par une étape de désorption, puis une Chromatographie des gaz et enfin une détection sélective des composants d'azote. Une évaluation de l'exposition des professionnels a été réalisée dans le secteur du nettoyage afin de déterminer la concentration atmosphérique en monoéthanolamine, en éthers de glycol et en alcool benzylique au cours des différentes tâches de nettoyage effectuées par les professionnels du nettoyage dans différentes entreprises, ainsi que pour déterminer les concentrations atmosphériques de fond en formaldéhyde, un polluant de l'air intérieur bien connu. L'étude de l'exposition professionnelle a été effectuée dans 12 compagnies de nettoyage et les échantillons d'air individuels ont été collectés pour l'éthanolamine (n=68), les éthers de glycol (n=79), l'alcool benzylique (n=15) et le formaldéhyde (n=45). Toutes les substances mesurées dans l'air, excepté le 2-butoxyéthanol, étaient en-dessous (<1/10) de la valeur moyenne d'exposition aux postes de travail en Suisse (8 heures), excepté pour le butoxypropanol et l'alcool benzylique, pour lesquels aucune valeur limite d'exposition n'était disponible. Bien que détecté qu'une seule fois, les concentrations d'air de 2-butoxyéthanol (n=4) étaient élevées (49,5 mg/m3 à 58,7 mg/m3), se situant au-dessus de la frontière des valeurs limites d'exposition aux postes de travail en Suisse (49 mg/m3). Les concentrations d'air de fond n'ont montré aucune présence de monoéthanolamine, alors que les éthers de glycol étaient souvent présents et les formaldéhydes quasiment toujours détectés. L'exposition des professionnels a été influencée par la quantité de monoéthanolamine présente dans les produits de nettoyage utilisés, par la ventilation extérieure et par l'emploie de sprays. Durant la dernière phase de l'étude, les informations collectées ont été utilisées pour tester un outil de modélisation de l'exposition déjà existant, l'outil de Bayesian. L'estimation de l'exposition de cet outil convergeait avec l'exposition mesurée. Cela a été le mieux décrit par une équation du second degré inversée. Les résultats suggèrent que l'outil de Bayesian n'est pas adapté pour mettre en évidence les taux d'expositions faibles. Cet outil devrait également être testé avec d'autres ensembles de données décrivant des taux d'expositions plus élevés. L'exposition répétée à des substances chimiques ayant des propriétés irritatives et sensibilisantes devrait être investiguée d'avantage, afin de mieux comprendre l'apparition de maladies respiratoires chez les professionnels du nettoyage. Des mesures de prévention devraient tout particulièrement être orientées sur l'utilisation correcte des produits de nettoyage, afin d'éviter les concentrations d'air élevées se situant à la valeur limite d'exposition acceptée.
Resumo:
Especially under no-tillage, subsuface soil acidity has been a problem, because it depends on base leaching, which has been associated with the presence of low molecular weigth organic acids and companion anions. The objective of this study was to evaluate exchangeable base cation leaching as affected by surface liming along with annual urea side-dressing of maize and upland rice. Treatments consisted of four lime rates (0, 1500, 3000, and 6000 kg ha-1) combined with four nitrogen rates (0, 50, 100, and 150 kg ha-1) applied to maize (Zea mays) and upland rice (Oryza sativa), in two consecutive years. Maize was planted in December, three months after liming. In September of the following year, pearl millet (Pennisetum glaucum) was planted without fertilization and desiccated 86 days after plant emergence. Afterwards, upland rice was grown. Immediately after upland rice harvest, 18 months after surface liming, pH and N-NO3-, N-NH4+, K, Ca, and Mg levels were evaluated in soil samples taken from the layers 0-5, 5-10, 10-20 and 20-40 cm. Higher maize yields were obtained at higher N rates and 3000 kg ha-1 lime. Better results for upland rice and pearl millet yields were also obtained with this lime rate, irrespective of N levels. The vertical mobility of K, Ca and Mg was higher in the soil profiles with N fertilization. Surface liming increased pH in the upper soil layers causing intense nitrate production, which was leached along with the base cations.
Resumo:
We analyzed the initial adhesion and biofilm formation of Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) on various bone grafts and bone graft substitutes under standardized in vitro conditions. In parallel, microcalorimetry was evaluated as a real-time microbiological assay in the investigation of biofilm formation and material science research. The materials beta-tricalcium phosphate (beta-TCP), processed human spongiosa (Tutoplast) and poly(methyl methacrylate) (PMMA) were investigated and compared with polyethylene (PE). Bacterial counts (log(10) cfu per sample) were highest on beta-TCP (S. aureus 7.67 +/- 0.17; S. epidermidis 8.14 +/- 0.05) while bacterial density (log(10) cfu per surface) was highest on PMMA (S. aureus 6.12 +/- 0.2, S. epidermidis 7.65 +/- 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (beta-TCP and processed human spongiosa, p < 0.001) compared to the smooth materials (PMMA and PE), with no differences between beta-TCP and processed human spongiosa (p > 0.05) or PMMA and PE (p > 0.05). In contrast, for S. epidermidis biofilms the detection time was different (p < 0.001) between all materials except between processed human spongiosa and PE (p > 0.05). The quantitative analysis by quantitative culture after washing and sonication of the material demonstrated the importance of monitoring factors like specific surface or porosity of the test materials. Isothermal microcalorimetry proved to be a suitable tool for an accurate, non-invasive and real-time microbiological assay, allowing the detection of bacterial biomass without removing the biofilm from the surface.
Resumo:
New Global Positioning System (GPS) receivers allow now to measure a location on earth at high frequency (5Hz) with a centimetric precision using phase differential positioning method. We studied whether such technique was accurate enough to retrieve basic parameters of human locomotion. Eight subjects walked on an athletics track at four different imposed step frequencies (70-130steps/min) plus a run at free pace. Differential carrier phase localization between a fixed base station and the mobile antenna mounted on the walking person was calculated. In parallel, a triaxial accelerometer, attached to the low back, recorded body accelerations. The different parameters were averaged for 150 consecutive steps of each run for each subject (total of 6000 steps analyzed). We observed a perfect correlation between average step duration measured by accelerometer and by GPS (r=0.9998, N=40). Two important parameters for the calculation of the external work of walking were also analyzed, namely the vertical lift of the trunk and the velocity variation per step. For an average walking speed of 4.0km/h, average vertical lift and velocity variation were, respectively, 4.8cm and 0.60km/h. The average intra-individual step-to-step variability at a constant speed, which includes GPS errors and the biological gait style variation, were found to be 24. 5% (coefficient of variation) for vertical lift and 44.5% for velocity variation. It is concluded that GPS technique can provide useful biomechanical parameters for the analysis of an unlimited number of strides in an unconstrained free-living environment.
Resumo:
Biological nitrogen fixation by rhizobium-legume symbiosis represents one of the most important nitrogen sources for plants and depends strongly on the symbiotic efficiency of the rhizobium strain. This study evaluated the symbiotic capacity of rhizobial isolates from calopo (CALOPOGONIUM MUCUNOIDES) taken from an agrisoil under BRACHIARIA DECUMBENS pasture, sabiá (MIMOSA CAESALPINIIFOLIA) plantations and Atlantic Forest areas of the Dry Forest Zone of Pernambuco. A total of 1,575 isolates were obtained from 398 groups. A single random isolate of each group was authenticated, in randomized blocks with two replications. Each plant was inoculated with 1 mL of a bacterial broth, containing an estimated population of 10(8) rhizobial cells mL-1. Forty-five days after inoculation, the plants were harvested, separated into shoots, roots and nodules, oven-dried to constant mass, and weighed. Next, the symbiotic capability was tested with 1.5 kg of an autoclaved sand:vermiculite (1:1) mixture in polyethylene bags. The treatments consisted of 122 authenticated isolates, selected based on the shoot dry matter, five uninoculated controls (treated with 0, 50, 100, 150, or 200 kg ha-1 N) and a control inoculated with SEMIA 6152 (=BR1602), a strain of BRADYRHIZOBIUM JAPONICUM The test was performed as described above. The shoot dry matter of the plants inoculated with the most effective isolates did not differ from that of plants treated with 150 kg ha-1 N. Shoot dry matter was positively correlated with all other variables. The proportion of effective isolates was highest among isolates from SABIÁ forests. There was great variation in nodule dry weight, as well as in N contents and total N.
Resumo:
To control the selective adhesion of human endothelial cells and human serum proteins to bioceramics of different compositions, a multifunctional ligand containing a cyclic arginine-glycine-aspartate (RGD) peptide, a tetraethylene glycol spacer, and a gallate moiety was designed, synthesized, and characterized. The binding of this ligand to alumina-based, hydroxyapatite-based, and calcium phosphate-based bioceramics was demonstrated. The conjugation of this ligand to the bioceramics induced a decrease in the nonselective and integrin-selective binding of human serum proteins, whereas the binding and adhesion of human endothelial cells was enhanced, dependent on the particular bioceramics.
Resumo:
The artificial dsRNA polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a potent adjuvant candidate for vaccination, as it strongly drives cell-mediated immunity. However, because of its effects on non-immune bystander cells, poly(I:C) administration may bear danger for the development of autoimmune diseases. Thus poly(I:C) should be applied in the lowest dose possible. We investigated microspheres carrying surface-assembled poly(I:C) as a two-in-one adjuvant formulation to stimulate maturation of monocyte-derived dendritic cells (MoDCs). Negatively charged polystyrene microspheres were equipped with a poly(ethylene glycol) corona through electrostatically driven surface assembly of a library of polycationic poly(l-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres in an aqueous poly(I:C) solution. Surface-assembled poly(I:C) exhibited a strongly enhanced efficacy to stimulate maturation of MoDCs by up to two orders of magnitude, as compared to free poly(I:C). Multiple phagocytosis events were the key factor to enhance the efficacy. The cytokine secretion pattern of MoDCs after exposure to surface-assembled poly(I:C) differed from that of free poly(I:C), while their ability to stimulate T cell proliferation was similar. Overall, phagocytic signaling plays an important role in defining the resulting immune response to such two-in-one adjuvant formulations.
Resumo:
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152 mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38 mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.