968 resultados para pk-yrittäjyys


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we show that the implementation of spontaneous breaking of the lepton number in the 3-3-1 model with right-handed neutrinos gives rise to fast neutrino decay with Majoron emission and generates a bunch of new contributions to the neutrinoless double beta decay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic bright solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a quasi-one-dimensional cigar-shaped geometry. Due to a strong Pauli-blocking repulsion among spin-polarized fermions at short distances there cannot be bright fermionic solitons in the case of repulsive boson-fermion interactions. However, we demonstrate that stable bright fermionic solitons can be formed for a sufficiently attractive boson-fermion interaction in a boson-fermion mixture. We also consider the formation of fermionic solitons in the presence of a periodic axial optical-lattice potential. These solitons can be formed and studied in the laboratory with present technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that some models with SU(3)(C)circle times SU(3)(L)circle times U(1)(X) gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2)(L+R) symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1)(X)'s coupling constant, g(X), the sine of the weak mixing angle sin theta(W), and the mass of the W boson, M-W. In the limit in which this symmetry is valid it avoids the tree level mixing of the Z boson of the standard model with the extra Z(') boson. We have verified that the oblique T parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3)(L+R) custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, since the seesaw mechanism is mandatory to obtain light active neutrinos. Moreover, the approximate SU(2)(L+R)subset of SU(3)(L+R) symmetry implies that the extra nonstandard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scattering of orthopositronium (Ps) by hydrogen atoms has been investigated in a five-state coupled-channel model allowing for Ps(1s)H(2s,2p) and Ps(2s,2p)H(1s) excitations using a recently proposed electron-exchange model potential. The higher (n greater than or equal to 3) excitations and ionization of the Ps atom are calculated using the first Born approximation. Calculations are reported of scattering lengths, phase shifts. elastic, Ps and H excitation, and total cross sections. Remarkable correlations are observed between the S-wave Ps-H binding energy and the singlet scattering length, effective range, and resonance energy obtained in various model calculations. These correlations suggest that if a Ps-H dynamical model yields the correct result for one of these four observables, it is expected to lead to the correct result for the other three. The present model, which is constructed so as to reproduce the Ps-H resonance at 4.01 eV, automatically yields a Ps-H bound state at - 1.05 eV that compares well with the accurate value of - 1.067 eV. The model leads to a singlet scattering length of 3.72a(0) and effective range of 1.67a(0), whereas the correlations suggest the precise values of 3.50a(0) and 1.65a(0) for these observables, respectively. [S1050-2947(99)07703-3].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have searched for a heavy resonance decaying into a Z+jet final state in p (p) over bar collisions at a center of mass energy of 1.96 TeV at the Fermilab Tevatron collider using the D0 detector. No indication for such a resonance was found in a data sample corresponding to an integrated luminosity of 370 pb(-1). We set upper limits on the cross section times branching fraction for heavy resonance production at the 95% C.L. as a function of the resonance mass and width. The limits are interpreted within the framework of a specific model of excited quark production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Models with interacting dark energy can alleviate the cosmic coincidence problem by allowing dark matter and dark energy to evolve in a similar fashion. At a fundamental level, these models are specified by choosing a functional form for the scalar potential and for the interaction term. However, in order to compare to observational data it is usually more convenient to use parametrizations of the dark energy equation of state and the evolution of the dark matter energy density. Once the relevant parameters are fitted, it is important to obtain the shape of the fundamental functions. In this paper I show how to reconstruct the scalar potential and the scalar interaction with dark matter from general parametrizations. I give a few examples and show that it is possible for the effective equation of state for the scalar field to cross the phantom barrier when interactions are allowed. I analyze the uncertainties in the reconstructed potential arising from foreseen errors in the estimation of fit parameters and point out that a Yukawa-like linear interaction results from a simple parametrization of the coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine a nearly extreme macroscopic Reissner-Nordstrom black hole in the context of semiclassical gravity. The absorption rate associated with the quantum tunneling process of scalar particles whereby this black hole can acquire enough angular momentum to violate the weak cosmic-censorship conjecture is shown to be nonzero.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-lived, heavy particles are predicted in a number of models beyond the standard model of particle physics. We present the first direct search for such particles' decays, occurring up to 100 h after their production and not synchronized with an accelerator bunch crossing. We apply the analysis to the gluino (g), predicted in split supersymmetry, which after hadronization can become charged and lose enough momentum through ionization to come to rest in dense particle detectors. Approximately 410 pb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected with the D0 detector during Run II of the Fermilab Tevatron collider are analyzed in search of such stopped gluinos decaying into a gluon and a neutralino ((chi) over tilde (0)(1)). Limits are placed on the (gluino cross section) x (probability to stop) x [BR((g) over tilde -> g (chi) over tilde (0)(1))] as a function of the gluino and (chi) over tilde (0)(1) masses, for gluino lifetimes from 30 mu s-100 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this article is to derive the Feynman rules involving single charginos, neutralinos, double charged gauge bosons, and sleptons in a 3-3-1 supersymmetric model. Using these Feynman rules we calculate the production of double charged charginos with neutralinos and also the production of a pair of single charged charginos, both in an electron-electron linear collider.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that, unlike Einstein's gravity, quadratic gravity produces dispersive photon propagation. The energy-dependent contribution to the deflection of photons passing by the Sun is computed and subsequently the angle at which the visible spectrum would be spread over is plotted as a function of the R-mu nu(2)-sector mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motion of a nonrelativistic particle on a cone with a magnetic flux running through the cone axis (a flux cone) is studied. It is expressed as the motion of a particle moving on the Euclidean plane under the action of a velocity-dependent force. The probability fluid (quantum flow) associated with a particular stationary state is studied close to the singularity, demonstrating nontrivial Aharonov-Bohm effects. For example, it is shown that, near the singularity, quantum flow departs from classical flow. In the context of the hydrodynamical approach to quantum mechanics, quantum potential due to the conical singularity is determined, and the way it affects quantum flow is analyzed. It is shown that the winding number of classical orbits plays a role in the description of the quantum Bow. The connectivity of the configuration space is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of a topological Chern-Simons term to three-dimensional higher-derivative gravity is not a good therapy to cure the nonunitarity of the aforementioned theory. Moreover, R+R-2 gravity in (2+1)D, which is unitary at the tree level, becomes tree-level nonunitary when it is augmented by the abovementioned topological term. Therefore, unlike what is claimed in the literature, topological higher-derivative gravity in (2+1)D is not tree-level unitary and neither is topological three-dimensional R+R-2 gravity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study and look for similarities between the response rates R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) of a static scalar source with constant proper acceleration a(0) interacting with a massless, conformally coupled Klein-Gordon field (i) in de Sitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation emanating from the de Sitter cosmological horizon and (ii) in Schwarzschild-de Sitter spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the cosmological horizons, respectively, where Lambda is the cosmological constant and M is the black hole mass. After performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum numbers. In the case of de Sitter spacetime, this formula is worked out and a closed, analytical form is obtained. In the case of Schwarzschild-de Sitter spacetime such a closed formula could not be obtained, and a numerical analysis is performed. We conclude, in particular, that R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) do not coincide in general, but tend to each other when Lambda-->0 or a(0)-->infinity. Our results are also contrasted and shown to agree (in the proper limits) with related ones in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of an identity that equates the elliptic genus partition function of a supersymmetric sigma model on the N-fold symmetric product (SX)-X-N of X ((SX)-X-N=X-N/S-N, where S-N is the symmetric group of N elements) to the partition function of a second-quantized string theory, we derive the asymptotic expansion of the partition function as well as the asymptotic for the degeneracy of spectrum in string theory. The asymptotic expansion for the state counting reproduces the logarithmic correction to the black hole entropy.