994 resultados para petrology, sedimentary


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pantanal region can be characterized as a quaternary floodplain with predominant sedimentation in the form of alluvial fans. In the geomorphologic and sedimentary evolution, the avulsion process is inherent to this depositional system and its dynamics, together with surface water floods, influence soil sedimentation on this plain. The knowledge and differentiation of these two events can contribute to a better understanding of the variability of soil properties and distribution under the influence of these sedimentation processes. Therefore, this study investigated the genesis of soils in the Northern Pantanal with textural contrasts in deeper horizons and their relationship with the depositional system dynamics. We analyzed four soil profiles in the region of Barão de Melgaço, Mato Grosso State, Brazil (RPPN SESC Pantanal). Two profiles were sampled near the Rio Cuiabá (AP1 and AP4) and two near the Rio São Lourenço (AP10 and AP11). In AP11, the horizons contrast in particle size between the profile basis and the surface. In AP1, AP4 and AP10, the horizons overlaying the sand layer have similar particle size properties, mainly in terms of sand distribution. In the first case, floods (surface water) seem to have originated the horizons and layers with contrasting texture. In the second case, avulsion is the most pronounced process. Therefore, the two modes can form soils with contrasting texture that are discriminable by soil morphology, based on the distinct features associated to the specific sedimentation processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The retention and availability of water in the soil vary according to the soil characteristics and determine plant growth. Thus, the aim of this study was to evaluate water retention and availability in the soils of the State of Santa Catarina, Brazil, according to the textural class, soil class and lithology. The surface and subsurface horizons of 44 profiles were sampled in different regions of the State and different cover crops to determine field capacity, permanent wilting point, available water content, particle size, and organic matter content. Water retention and availability between the horizons were compared in a mixed model, considering the textural classes, the soil classes and lithology as fixed factors and profiles as random factors. It may be concluded that water retention is greater in silty or clayey soils and that the organic matter content is higher, especially in Humic Cambisols, Nitisols and Ferralsol developed from igneous or sedimentary rocks. Water availability is greater in loam-textured soils, with high organic matter content, especially in soils of humic character. It is lower in the sandy texture class, especially in Arenosols formed from recent alluvial deposits or in gravelly soils derived from granite. The greater water availability in the surface horizons, with more organic matter than in the subsurface layers, illustrates the importance of organic matter for water retention and availability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variety of soils in the State of Acre is wide and their chemical profiles are still not fully understood. The nature of the material of origin of these soils is indicated by the high aluminium (Al) content, commonly associated with high calcium (Ca) and magnesium (Mg) contents. The study objective was to use different methods to quantify Al in soils from toposequences formed from material of a sedimentary nature originating from the Solimões Formation, in Acre, Brazil. Trenches were opened at three distinct points in the landscape: shoulder, backslope and footslope positions. Soil samples were collected for physical, chemical, mineralogical analyses. The Al content was quantified using different methods. High Al contents were found in most of these horizons, associated with high Ca and Mg levels, representing the predominant cations in the sum of exchangeable bases. The mineralogy indicates that the soils are still in a low weathering phase, with the presence of significant quantities of 2:1 minerals. Similar Al contents were determined by the methods of NaOH titration, xylenol orange spectrometry and inductively coupled plasma optical emission spectrometry. However, no consistent data were obtained by the pyrocatechol violet method. Extraction with KCl overestimated the exchangeable Al content due to its ability to extract the non-exchangeable Al present in the smectite interlayers. It was observed that high Al contents are related to the instability of the hydroxyl-Al smectite interlayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Delamination and foundering of the lower continental crust (LCC) into the mantle is part of the crust-forming mechanism. However, knowledge of the composition and mineralogy of the preserved or delaminated LCC over geological timescales remains scarce. We provide a synopsis of recent research within the Kohistan arc (Pakistan) and demonstrate that hydrous and less hydrous liquid lines of descent related to flux assisted and decompression mantle melting, respectively, produce compositionally different lower crustal rocks. The argument refers to two lower crustal sections exposed in Kohistan, the older Southern Plutonic Complex (SPC) and the younger Chilas Complex. The SPC typifies a hydrous, high-pressure fractionation sequence of olivine-pyroxenes-garnet-Fe/Ti-oxide-amphibole-plagioclase. The Chilas Complex illustrates a less hydrous fractionation sequence of olivine-clinopyroxene-orthopyroxene-plagioclase-amphibole. Despite the similarity of the Chilas Complex rocks to proposed lower crust compositions, the less hydrous fractionation results in unrealistically small volumes of silica-rich rocks, precluding the Chilas Complex gabbros to represent the magmatic complement to the upper crust. The composition of the SPC lower crust differs markedly from bulk lower crust estimates, but is complementary to silica-rich rocks exposed along this section and in the Kohistan batholith. These observations inspire a composite model for the formation of continental crust (CC) where the negatively buoyant delaminated and the buoyant preserved lower continental crusts (LCC) differ in genesis, mineralogy, and composition. We propose that the upper, non-sedimentary subsequent removal of the complementary, negatively buoyant garnet-pyroxene-amphibole-plagioclase-rich cumulates. In contrast, the LCC, which is buoyant and preserved over geological timescales, is formed by less hydrous parental mantle melts. We suggest that the bulk continental crust composition is related to mixing of these petrologically not directly related end members. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new terrane subdivision of Nicaragua and Northern Costa Rica, based on Upper Triassic to Upper Cretaceous radiolarian biochronology of ribbon radiolarites, the newly studied Siuna Serpentinite Mélange, and published 40Ar/39Ar dating and geochemistry of mafic and ultramafic igneous rock units of the area. The new Mesquito Composite Oceanic Terrane (MCOT) comprises the southern half of the Chortis Block, that was assumed to be a continental fragment of N-America. The MCOT is defined by 4 corner localities characterized by ultramafic and mafic oceanic rocks and radiolarites of Late Triassic, Jurassic and Early Cretaceous age: 1. The Siuna Serpentinite Mélange (NE-Nicaragua), 2. The El Castillo Mélange (Nicaragua/Costa Rica border), 3.The Santa Elena Ultramafics (N-Costa Rica) and, 4. DSDP Legs 67/84. 1. The Siuna Serpentinite Mélange contains, high pressure metamorphic mafics and Middle Jurassic (Bajocian-Bathonian) radiolarites in original, sedimentary contact with arc-metandesites. The Siuna Mélange also contains Upper Jurassic black detrital chert formed in a marginal (fore-arc?) basin shortly before subduction. A phengite 40Ar/39Ar -cooling age dates the exhumation of the high pressure rocks as 139 Ma (earliest Cretaceous). 2. The El Castillo Mélange comprises a radiolarite block tectonically embedded in serpentinite that yielded a diverse Rhaetian (latest Triassic) radiolarian assemblage, the oldest fossils recovered so far from S-Central America. 3. The Santa Elena Ultramafics of N-Costa Rica together with the serpentinite outcrops near El Castillo (2) in Southern Nicaragua, are the southernmost outcrops of the MCOT. The Santa Elena Unit (3) itself is still undated, but it is thrust onto the middle Cretaceous Santa Rosa Accretionary Complex (SRAC), that contains Lower to Upper Jurassic, highly deformed radiolarite blocks, probably reworked from the MCOT, which was the upper plate with respect to the SRAC. 4. Serpentinites, metagabbros and basalts have long been known from DSDP Leg 67/84 (3), drilled off Guatemala in the Nicaragua-Guatemala forearc basement. They have been restudied and reveal 40Ar/39Ar dated Upper Triassic to middle Cretaceous enriched Ocean Island Basalts and Jurassic to Lower Cretaceous depleted Island arc rocks of probable Pacific origin. The area between localities 1-4 is largely covered by Tertiary to Recent arcs, but we suspect that its basement is made of oceanic/accreted terranes. Earthquake seismic studies indicate an ill-defined, shallow Moho in this area. The MCOT covers most of Nicaragua and could extend to Guatemala to the W and form the Lower (southern) Nicaragua Rise to the NE. Some basement complexes of Jamaica, Hispaniola and Puerto Rico may also belong to the MCOT. The Nicoya Complex s. str. has been regarded as an example of Caribbean crust and the Caribbean Large Igneous Province (CLIP). However, 40Ar/39Ar - dates on basalts and intrusives indicate ages as old as Early Cretaceous. Highly deformed Jurassic and Lower Cretaceous radiolarites occur as blocks within younger intrusives and basalts. Our interpretation is that radiolarites became first accreted to the MCOT, then became reworked into the Nicoya Plateau in Late Cretaceous times. This implies that the Nicoya Plateau formed along the Pacific edge of the MCOT, independent form the CLIP and most probably unrelated with he Galapagos hotspot. No Jurassic radiolarite, no older sediment age than Coniacian-Santonian, and no older 40Ar/39Ar age than 95 Ma is known from S-Central America between SE of Nicoya and Colombia. For us this area represents the trailing edge of the CLIP s. str.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plutonic rocks of the Basal Complex of La Gomera, Canary Islands, Spain, were studied by means of major and trace element contents and by H-O-Sr-Nd isotope compositions in order to distinguish primary magmatic characteristics and late-stage alteration products. Deciphering the effects of alteration allowed us to determine primary, plume-related compositions that indicated D- and (18)O-depletion relative to normal upper mantle, supporting the conclusions of earlier studies on the plutonic rocks of Fuerteventura and La Palma. Late-stage alteration took place during the formation of the intrusive series induced by interaction with meteoric water. Inferred isotopic compositions of the meteoric water indicate that the water infiltrated into the rock edifice at a height of about 1500 m above sea level, suggesting the existence of a subaerial volcano which was active during the intrusive activity and that it has been either distroyed or remain buried by later volcanic and landslide events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cenozoic sedimentary record revealed by the Integrated Ocean Drilling Program's Arctic Coring Expedition (ACEX) to the Lomonosov Ridge microcontinent in 2004 is characterized by an unconformity attributed to the period 44-18 Ma. According to conventional thermal kinematic models, the microcontinent should have subsided to >1 km depth owing to rifting and subsequent separation from the Barents-Kara Sea margin at 56 Ma. We propose an alternative model incorporating a simple pressure-temperature (P-T) relation for mantle density. Using this model, we can explain the missing stratigraphic section by post-breakup uplift and erosion. The pattern of linear magnetic anomalies and the spreading geometry imply that the generation of oceanic crust in the central Eurasia Basin could have been restricted and confined by non-volcanic thinning of the mantle lithosphere at an early stage (ca. 56-40 Ma). In response to a rise in temperature, the mantle mineral composition may have changed through breakdown of spinet peridotite and formation of less dense plagioclase peridotite. The consequence of lithosphere heating and related mineral phase transitions would be post-breakup uplift followed by rapid subsidence to the deep-water environment observed on the Lomonosov Ridge today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural settings and lithological characteristics are traditionally assumed to influence the development of erosional landforms, such as gully networks and rock couloirs, in steep mountain rock basins. The structural control of erosion of two small alpine catchments of distinctive rock types is evaluated by comparing the correspondences between the orientations of their gullies and rock couloirs with (1) the sliding orientations of potential slope failures mechanisms, and (2) the orientation of the maximum joint frequency, this latter being considered as the direction exploited primarily by erosion and mass wasting processes. These characteristic orientations can be interpreted as structural weaknesses contributing to the initiation and propagation of erosion. The morphostructural analysis was performed using digital elevation models and field observations. The catchment comprised of magmatic intrusive rocks shows a clear structural control, mostly expressed through potential wedges failure. Such joint configurations have a particular geometry that encourages the development of gullies in hard rock, e.g. through enhanced gravitational and hydrological erosional processes. In the catchment underlain by sedimentary rocks, penetrative joints that act as structural weaknesses seem to be exploited by gullies and rock couloirs. However, the lithological setting and bedding configuration prominently control the development of erosional landforms, and influence not only the local pattern of geomorphic features, but the general morphology of the catchment. The orientations of the maximum joint frequency are clearly associated with the gully network, suggesting that its development is governed by anisotropy in rock strength. These two catchments are typical of bedrock-dominated basins prone to intense processes of debris supply. This study suggests a quantitative approach for describing the relationship between bedrock jointing and geomorphic features geometry. Incorporation of bedrock structure can be relevant when studying processes governing the transfer of clastic material, for the assessment of sediment yields and in landforms evolution models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution carbon and oxygen isotope analysis of Late Oxfordian-Early Kimmeridgian deep-shelf sediments of southern Germany is combined with investigation of nannofossil assemblage composition and sedimentological interpretations in order to evaluate the impact of regional palaeoenvironmental conditions on isotopic composition of carbonates. This study suggests that carbonate mud was essentially derived from the Jura shallow platform environments and also that the isotopic signature of carbonates deposited in the Swabian Alb deep shelf indirectly expresses the palaeoenvironmental evolution of the platform. Short-term fluctuations in delta(13) C and delta(18)O are probably controlled by changes in salinity (fresh-water input versus evaporation) in platform environments. Long-term fluctuations in carbon and oxygen isotope record throughout the Late Oxfordian-Early Kimmeridgian result from the interplay of increasing temperature and decreasing humidity, which both control the trophic level. Changes from mesotrophic to oligotrophic conditions in platform environments and in the deep-shelf surface waters are inferred. During the Late Oxfordian (Bimammatum Subzone to Planula Zone), the delta(13)C curve displays a positive shift of about 1 parts per thousand, which is comparable in intensity to global perturbations of the carbon cycle. This evident isotopic shift has not been documented yet in other basinal settings. It can be reasonably explained by local palaeoenvironmental changes on the Jura platform (salinity, temperature, and nutrient availability) that controlled platform carbonate production, and the geochemistry of overlying waters. However, increasing carbonate production on the Jura platform and related positive delta(13)C shifts recorded in the Swabian Alb deep shelf are the regional signatures of climatic changes affecting other palaeogeographical domains of Europe in which the carbonate production increased throughout the Late Oxfordian. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melt-rock reaction in the upper mantle is recorded in a variety of ultramafic rocks and is an important process in modifying melt composition on its way from the source region towards the surface. This experimental study evaluates the compositional variability of tholeiitic basalts upon reaction with depleted peridotite at uppermost-mantle conditions. Infiltration-reaction processes are simulated by employing a three-layered set-up: primitive basaltic powder ('melt layer') is overlain by a 'peridotite layer' and a layer of vitreous carbon spheres ('melt trap'). Melt from the melt layer is forced to move through the peridotite layer into the melt trap. Experiments were conducted at 0.65 and 0.8 GPa in the temperature range 1,170-1,290 degrees C. In this P-T range, representing conditions encountered in the transition zone (thermal boundary layer) between the asthenosphere and the lithosphere underneath oceanic spreading centres, the melt is subjected to fractionation, and the peridotite is partially melting (T (s) similar to 1,260 degrees C). The effect of reaction between melt and peridotite on the melt composition was investigated across each experimental charge. Quenched melts in the peridotite layers display larger compositional variations than melt layer glasses. A difference between glasses in the melt and peridotite layer becomes more important at decreasing temperature through a combination of enrichment in incompatible elements in the melt layer and less efficient diffusive equilibration in the melt phase. At 1,290A degrees C, preferential dissolution of pyroxenes enriches the melt in silica and dilutes it in incompatible elements. Moreover, liquids become increasingly enriched in Cr(2)O(3) at higher temperatures due to the dissolution of spinel. Silica contents of liquids decrease at 1,260 degrees C, whereas incompatible elements start to concentrate in the melt due to increasing levels of crystallization. At the lowest temperatures investigated, increasing alkali contents cause silica to increase as a consequence of reactive fractionation. Pervasive percolation of tholeiitic basalt through an upper-mantle thermal boundary layer can thus impose a high-Si 'low-pressure' signature on MORB. This could explain opx + plag enrichment in shallow plagioclase peridotites and prolonged formation of olivine gabbros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the relationship between the differentiation of ferruginous accumulations and the variable water saturation of footslope soil patterns. An analysis of the slope morphology of a typical hill in the forest zone of southern Cameroon and a seasonal survey of the levels of groundwaters, springs and rivers were considered in relation to the petrology of different soil patterns. The study site is a tabular hillock whose slopes present a progressive development from steep to gentle slopes. The variable residence time of water within the soil, creating an alternation of reducing and oxidizing conditions, affects oil chemistry, structure and lateral extension of the soil patterns. The ferruginous soil patterns, being formed on the footslopes, gradually increase in extent with decreasing slope angle and the relative rise of the groundwater level. The steep footslopes, where groundwater has a shorter residence time, show a soft mottled clay pattern, restricted to the bottom part of the slope. The moderate footslopes exhibit a deep permanent and a temporary perched groundwater table. The latter, with its regular capillary fringe, contributes to more reducing conditions within isolated domains in the soil patterns, and thus to the alternation with oxidizing conditions, generating a continuous hard soil pattern (massive carapace). The more gently dipping footslopes exhibit groundwater levels near the surface and also a significant amplitude of groundwater fluctuation. Iron, previously accumulated in moderate footslope patterns, is reduced, remobilized, and leached. The soil patterns formed develop into a variegated carapace, more extended along the slope, containing less iron, but nevertheless more hardened, due to the important fluctuations of the groundwater table. These patterns are limited to the zone of groundwater fluctuation and deteriorate as the water fluctuation zone recedes. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo nos ha permitido la caracterización de los materiales silíceos del nivel II del yacimiento de la Cova del Parco (Al os de Balaguer, La Noguera, Lleida), a partir del estudio macroscópico y de la comparación petrográfica entre ciertas muestras de los materiales arqueológicos, y muestras recuperadas mediante la prospección del territorio a la búsqueda de sílex. El presente artículo se extrae de los resultados de nuestra tesis de licenciatura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of a field and microstructural study between the northern and the central bodies of the Lanzo plagioclase peridotite massif (NW Italy) indicate that the spatial distribution of deformation is asymmetric across kilometre-scale mantle shear zones. The southwestern part of the shear zone (footwall) shows a gradually increasing degree of deformation from porphyroclastic peridotites to mylonite, whereas the northeastern part (hanging wall) quickly grades into weakly deformed peridotites. Discordant gabbroic and basaltic dykes are asymmetrically distributed and far more abundant in the footwall of the shear zone. The porphyroclastic peridotite displays porphyroclastic zones and domains of igneous crystallization whereas mylonites are characterized by elongated porphyroclasts, embedded between fine-grained, polycrystalline bands of olivine, plagioclase, clinopyroxene, orthopyroxene, spinel, rare titanian pargasite, and domains of recrystallized olivine. Two types of melt impregnation textures have been found: (1) clinopyroxene porphyroclasts incongruently reacted with migrating melt to form orthopyroxene plagioclase; (2) olivine porphyroclasts are partially replaced by interstitial orthopyroxene. The meltrock reaction textures tend to disappear in the mylonites, indicating that deformation in the mylonite continued under subsolidus conditions. The pyroxene chemistry is correlated with grain size. High-Al pyroxene cores indicate high temperatures (11001030C), whereas low-Al neoblasts display lower final equilibration temperatures (860C). The spinel Cr-number [molar Cr/(Cr Al)] and TiO2 concentrations show extreme variability covering almost the entire range known from abyssal peridotites. The spinel compositions of porphyroclastic peridotites from the central body are more variable than spinel from mylonite, mylonite with ultra-mylonite bands, and porphyroclastic rocks of the northern body. The spinel compositions probably indicate disequilibrium and would favour rapid cooling, and a faster exhumation of the central peridotite body, relative to the northern one. Our results indicate that melt migration and high-temperature deformation are juxtaposed both in time and space. Meltrock reaction may have caused grain-size reduction, which in turn led to localization of deformation. It is likely that melt-lubricated, actively deforming peridotites acted as melt focusing zones, with permeabilities higher than the surrounding, less deformed peridotites. Later, under subsolidus conditions, pinning in polycrystalline bands in the mylonites inhibited substantial grain growth and led to permanent weak zones in the upper mantle peridotite, with a permeability that is lower than in the weakly deformed peridotites. Such an inversion in permeability might explain why actively deforming, fine-grained peridotite mylonite acted as a permeability barrier and why ascending mafic melts might terminate and crystallize as gabbros along actively deforming shear zones. Melt-lubricated mantle shear zones provide a mechanism for explaining the discontinuous distribution of gabbros in oceancontinent transition zones, oceanic core complexes and ultraslow-spreading ridges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The deltaO-18(SMOW) values of the quartz (after coesite) (delta O-18 = 8.1 to 8.6 parts per thousand, n = 6), phengite (6.2 to 6.4 parts per thousand, n = 3), kyanite (6.1 parts per thousand, n = 2), garnet (5.5 to 5.8 parts per thousand, n = 9), ellenbergerite (6.3 parts per thousand, n = 1) and rutile (3.3. to 3.6 parts per thousand, n = 3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700-750-degrees-C. Minimum pressures are 31-32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc + kyanite = pyrope + coesite + H2O, the a(H2O) must be reduced to 0.4-0.75 at 700 750-degrees-C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X (CO2) > 0.02 (T = 750-degrees-C; P = 30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are approximately 680-degrees-C/30 kb at a(H2O) = 1.0 and are calculated to be approximately 70-degrees-C higher at a(H2O) = 0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34 +/- 2 kb, 700-750-degrees-C and 0.4-0.75. The oxygen isotope fractionation between quartz (deltaO-18 = 11.6%.) and garnet (deltaO-18 = 8.7 parts per thousand) in the surrounding orthognesiss is identical to that in the coesite-bearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (deltaD(smow) = -27 to -32 parts per thousand), on secondary talc and chlorite after pyrope (deltaD = - 39 to - 44 parts per thousand) and on the surrounding biotite (deltaD = -64 parts per thousand) and phengite (deltaD = -44 parts per thousand) gneiss. All phases appear to be in near-equilibrium. The very high deltaD values for the primary hydrous phases is consistent with an initial oceanic-derived/connate fluid source. The fluid source for the retrograde talc + chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar deltaD, but dissimilar deltaO-18 values of the coesite-bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.