957 resultados para peak height velocity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calanoid copepod Neocalan us plumchrus (Marukawa) is a dominant member of the spring mesozooplankton in the subarctic North Pacific and Bering Sea. Previous studies have shown interdecadal and latitudinal variation in seasonal developmental timing, with peak biomass occurring earlier in years and places with warmer upper ocean temperatures. Because N. plumchrus normally has a single dominant annual cohort, its seasonal timing can be indexed from measurements of total population biomass or by following progressive changes in stage composition. Early studies empirically found that peak upper ocean biomass occurred when about half of the pre-dormant population had reached copepodite stage 5 (C5). However, more recent comparisons derived from recent Continuous Plankton Recorder (CPR) data now show peak biomass when a larger fraction (> 80%) of the population is at C5. CPR samples the surface 10 to 15 m, but comparisons to depth-resolved BIONESS data show that this discrepancy is not an artefact of sampling depth. Other causes are either a prolongation of duration of pre-dormant C5 or a narrowing of the age range making up the annual cohort. We assessed changes in cohort width using a modification of Greve's cumulative percentile method, and found that average cohort widths in the Alaska Gyre were significantly narrower in 2000-2007 than in 1957-1965 (1968-1980 were intermediate). Net tow sampling of Strait of Georgia populations showed a similar significant narrowing of cohorts in the 2003-2005 sampling period. This study provides evidence that in addition to the shift to an earlier occurrence of peak biomass reported previously, the duration of the peak has also decreased in the last decade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note presents a simple model for prediction of liquid hold-up in two-phase horizontal pipe flow for the stratified roll wave (St+RW) flow regime. Liquid hold-up data for horizontal two-phase pipe flow [1, 2, 3, 4, 5 and 6] exhibit a steady increase with liquid velocity and a more dramatic fall with increasing gas rate as shown by Hand et al. [7 and 8] for example. In addition the liquid hold-up is reported to show an additional variation with pipe diameter. Generally, if the initial liquid rate for the no-gas flow condition gives a liquid height below the pipe centre line, the flow patterns pass successively through the stratified (St), stratified ripple (St+R), stratified roll wave, film plus droplet (F+D) and finally the annular (A+D, A+RW, A+BTS) regimes as the gas rate is increased. Hand et al. [7 and 8] have given a detailed description of this progression in flow regime development and definitions of the patterns involved. Despite the fact that there are over one hundred models which have been developed to predict liquid hold-up, none have been shown to be universally useful, while only a handful have proven to be applicable to specific flow regimes [9, 10, 11 and 12]. One of the most intractable regimes to predict has been the stratified roll wave pattern where the liquid hold-up shows the most dramatic change with gas flow rate. It has been suggested that the momentum balance-type models, which give both hold-up and pressure drop prediction, can predict universally for all flow regimes but particularly in the case of the difficult stratified roll wave pattern. Donnelly [1] recently demonstrated that the momentum balance models experienced some difficulties in the prediction of this regime. Without going into lengthy details, these models differ in the assumed friction factor or shear stress on the surfaces within the pipe particularly at the liquid–gas interface. The Baker–Jardine model [13] when tested against the 0.0454 m i.d. data of Nguyen [2] exhibited a wide scatter for both liquid hold-up and pressure drop as shown in Fig. 1. The Andritsos–Hanratty model [14] gave better prediction of pressure drop but a wide scatter for liquid hold-up estimation (cf. Fig. 2) when tested against the 0.0935 m i.d. data of Hand [5]. The Spedding–Hand model [15], shown in Fig. 3 against the data of Hand [5], gave improved performance but was still unsatisfactory with the prediction of hold-up for stratified-type flows. The MARS model of Grolman [6] gave better prediction of hold-up (cf. Fig. 4) but deterioration in the estimation of pressure drop when tested against the data of Nguyen [2]. Thus no method is available that will accurately predict liquid hold-up across the whole range of flow patterns but particularly for the stratified plus roll wavy regime. The position is particularly unfortunate since the stratified-type regimes are perhaps the most predominant pattern found in multiphase lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (Te in degrees Kelvin) in the range 2 × 103 to 1 × 106. Forbidden transitions results are given between the 3d6, 3d54s, and the 3d54p manifolds applicable to the modeling of laboratory and astrophysical plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced arterial compliance precedes changes in blood pressure, which may be mediated through alterations in vessel wall matrix composition. We investigated the effect of the collagen type I-1 gene (COL1A1) +2046G>T polymorphism on arterial compliance in healthy individuals. We recruited 489 subjects (251 men and 238 women; mean age, 22.6±1.6 years). COL1A1 genotypes were determined using polymerase chain reaction and digestion by restriction enzyme Bal1. Arterial pulse wave velocities were measured in 3 segments, aortoiliac (PWVA), aortoradial (PWVB), and aorto-dorsalis-pedis (PWVF), as an index of compliance using a noninvasive optical method. Data were available for 455 subjects. The sample was in Hardy-Weinberg equilibrium with genotype distributions and allele frequencies that were not significantly different from those reported previously. The T allele frequency was 0.22 (95% confidence interval, 0.19 to 0.24). Two hundred eighty-three (62.2%) subjects were genotype GG, 148 (35.5%) subjects were genotype GT, and 24 (5.3%) subjects were genotype TT. A comparison of GG homozygotes with GT and TT individuals demonstrated a statistically significant association with arterial compliance: PWVF 4.92±0.03 versus 5.06±0.05 m/s (ANOVA, P=0.009), PWVB 4.20±0.03 versus 4.32±0.04 m/s (ANOVA, P=0.036), and PWVA 3.07±0.03 versus 3.15±0.03 m/s (ANOVA, P=0.045). The effects of genotype were independent of age, gender, smoking, mean arterial pressure, body mass index, family history of hypertension, and activity scores. We report an association between the COL1A1 gene polymorphism and arterial compliance. Alterations in arterial collagen type 1A deposition may play a role in the regulation of arterial compliance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-cadence multiwavelength optical observations were taken with the Dunn Solar Telescope at the National Solar Observatory, Sacramento Peak, accompanied by Advanced Stokes Polarimeter vector magnetograms. A total of 11 network bright points (NBPs) have been studied at different atmospheric heights using images taken in wave bands centered on Mg I b(1) - 0.4 Angstrom, Halpha, and Ca II K-3. Wavelet analysis was used to study wave packets and identify traveling magnetohydrodynamic waves. Wave speeds were estimated through the temporal cross-correlation of signals, in selected frequency bands of wavelet power, in each wavelength. Four mode-coupling cases were identified, one in each of four of the NBPs, and the variation of the associated Fourier power with height was studied. Three of the detected mode-coupling, transverse-mode frequencies were observed in the 1.2-1.6 mHz range (mean NBP apparent flux density magnitudes over 99-111 Mx cm(-2)), with the final case showing 2.0-2.2 mHz (with 142 Mx cm(-2)). Following this, longitudinal-mode frequencies were detected in the range 2.6-3.2 mHz for three of our cases, with 3.9-4.1 mHz for the remaining case. After mode coupling, two cases displayed a decrease in longitudinal-mode Fourier power in the higher chromosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present intermediate-resolution HST/STIS spectra of a high- velocity interstellar cloud ((LSR)-L-upsilon = + 80 kms(-1)) towards DI1388, a young star in the Magellanic Bridge located between the Small and Large Magellanic Clouds. The STIS data have a signal-to-noise ratio (S/N) of 20-45 and a spectral resolution of about 6.5 km s(-1) (FWHM), The high-velocity cloud absorption is observed in the lines of C II, O I, Si II, Si III, Si IV and S III. Limits can be placed on the amount of S II and Fe II absorption that is present. An analysis of the relative abundances derived from the observed species, particularly C II and O I, suggests that this high-velocity gas is warm (T-k similar to 10(3)-10(4) K) and predominantly ionized, This hypothesis is supported by the presence of absorption produced by highly ionized species, such as Si IV, This sightline also intercepts two other high-velocity clouds that produce weak absorption features at (LSR)-L-upsilon = + 113 and + 130kms(-1) in the STIS spectra.