979 resultados para pathogens
Resumo:
Arbuscular mycorrhizal symbioses occur between fungi and the majority of plant species. They are important for plant nutrition, plant growth, protection from pathogens, plant diversity, nutrient cycling, and ecosystem processes. A key goal in research is to understand the molecular basis of the establishment, regulation, and functioning of the symbiosis. However, lack of knowledge on the genetics of the fungal side of this association has hindered progress. Here, we show how several key, recently discovered processes concerning the genetics of arbuscular mycorrhizal fungi could be essential for ultimately understanding the molecular genetics of this important symbiosis with plants.
Resumo:
In Pseudomonas fluorescens CHA0 and other fluorescent pseudomonads, the Gac/Rsm signal transduction pathway is instrumental for secondary metabolism and biocontrol of root pathogens via the expression of regulatory small RNAs (sRNAs). Furthermore, in strain CHA0, an imbalance in the Krebs cycle can affect the strain's ability to produce extracellular secondary metabolites, including biocontrol factors. Here, we report the metabolome of wild-type CHA0, a gacA-negative mutant, which has lost Gac/Rsm activities, and a retS-negative mutant, which shows strongly enhanced Gac/Rsm-dependent activities. Capillary electrophoresis-based metabolomic profiling revealed that the gacA and retS mutations had opposite effects on the intracellular levels of a number of central metabolites, suggesting that the Gac/Rsm pathway regulates not only secondary metabolism but also primary metabolism in strain CHA0. Among the regulated metabolites identified, the alarmone guanosine tetraphosphate (ppGpp) was characterized in detail by the construction of relA (for ppGpp synthase) and spoT (for ppGpp synthase/hydrolase) deletion mutants. In a relA spoT double mutant, ppGpp synthesis was completely abolished, the expression of Rsm sRNAs was attenuated, and physiological functions such as antibiotic production, root colonization, and plant protection were markedly diminished. Thus, ppGpp appears to be essential for sustaining epiphytic fitness and biocontrol activity of strain CHA0.
Resumo:
Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity. Indeed in mice deficient for IL-1β (IL-1β(-/-)), or treated with the soluble IL-1βR antagonist, Anakinra, helminth infection results in enhanced type 2 immunity and accelerated parasite expulsion. IL-1β acts to decrease production of IL-25 and IL-33 at early time points following infection and parasite rejection was determined to require IL-25. Taken together, these data indicate that Hp promotes the release of host-derived IL-1β that suppresses the release of innate cytokines, resulting in suboptimal type 2 immunity and allowing pathogen chronicity.
Resumo:
Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up.
Resumo:
In intestinal secretions, secretory IgA (SIgA) plays an important sentinel and protective role in the recognition and clearance of enteric pathogens. In addition to serving as a first line of defense, SIgA and SIgA x antigen immune complexes are selectively transported across Peyer's patches to underlying dendritic cells in the mucosa-associated lymphoid tissue, contributing to immune surveillance and immunomodulation. To explain the unexpected transport of immune complexes in face of the large excess of free SIgA in secretions, we postulated that SIgA experiences structural modifications upon antigen binding. To address this issue, we associated specific polymeric IgA and SIgA with antigens of various sizes and complexity (protein toxin, virus, bacterium). Compared with free antibody, we found modified sensitivity of the three antigens assayed after exposure to proteases from intestinal washes. Antigen binding further impacted on the immunoreactivity toward polyclonal antisera specific for the heavy and light chains of the antibody, as a function of the antigen size. These conformational changes promoted binding of the SIgA-based immune complex compared with the free antibody to cellular receptors (Fc alphaRI and polymeric immunoglobulin receptor) expressed on the surface of premyelocytic and epithelial cell lines. These data reveal that antigen recognition by SIgA triggers structural changes that confer to the antibody enhanced receptor binding properties. This identifies immune complexes as particular structural entities integrating the presence of bound antigens and adds to the known function of immune exclusion and mucus anchoring by SIgA.
Resumo:
The activation of T cells is vital to the successful elimination of pathogens, but can also have a deleterious role in autoimmunity and transplant rejection. Various signalling pathways are triggered by the T-cell receptor; these have key roles in the control of the T-cell response and represent interesting targets for therapeutic immunomodulation. Recent findings define MALT1 (mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1) as a protein with proteolytic activity that controls T-cell activation by regulating key molecules in T-cell-receptor-induced signalling pathways
Resumo:
Immunity to infection with intracellular pathogens is regulated by interleukin 12 (IL-12), which mediates protective T helper type 1 (TH1) responses, or IL-4, which induces TH2 cells and susceptibility. Paradoxically, we show here that when present during the initial activation of dendritic cells (DCs) by infectious agents, IL-4 instructed DCs to produce IL-12 and promote TH1 development. This TH1 response established resistance to Leishmania major in susceptible BALB/c mice. When present later, during the period of T cell priming, IL-4 induced TH2 differentiation and progressive leishmaniasis in resistant mice. Because immune responses developed via the consecutive activation of DCs and then T cells, the contrasting effects of IL-4 on DC development and T cell differentiation led to immune responses that had opposing functional phenotypes.
Resumo:
An outbreak of vancomycin-resistant enterococci (VRE) occurred in 2011 in several hospitals of western Switzerland. Given that VRE can spread rapidly within hospitals and due to the potential transfer of resistance genes to other nosocomial pathogens like MRSA, stringent control measures were implemented. Excellent coordination of control measures between partner healthcare settings was successful in stopping the outbreak.
Resumo:
Summary: Microbiology of fresh produce : foodborne pathogens in fresh produce - a review
Resumo:
Antibiotic prophylaxis is commonly prescribed to patients with total arthroplasties before a dental intervention. This attitude is not evidence-based for several reasons: 1) the usual pathogens of prosthetic joint infections are not of oral origin; 2) even if given, systemic antibiotic do not completely suppress the occult bacteraemia occurring during dental intervention and 3) humans may have up to twelve episodes of occult bacteraemia of dental origin per day. Routine antibiotic prophylaxis should be clearly distinguished from the antibiotic treatment required in case of established oral cavity infection. A constant optimal oral and dental hygiene is more important in terms of prevention and should be routinely recommended to every patient carrying a joint arthroplasty.
Resumo:
Background: Citrobacter rodentium is a natural mouse pathogen that is genetically closelyrelated to the human enteric pathogens enteropathogenic and enterohemorrhagic E. coli.Among the repertoire of conserved virulence factors that these pathogens deliver via typeIII secretion, Tir and EspF are responsible for the formation of characteristic actin-richpedestals and disruption of tight junction integrity, respectively. There is evidence In Vitrothese effectors accomplish this, at least in part, by subverting the normal host cellularfunctions of N-WASP, a critical regulator of branched chain actin assembly. Although NWASPhas been shown to be involved in pedestal formation In Vitro, the requirements ofN-WASP-mediated actin pedestals for intestinal colonization by attaching/effacing (A/E)pathogens In Vivo is not known. Furthermore, it is not known whether N-WASP is requiredfor EspF-mediated tight junction disruption. Methods: To investigate the role of N-WASPin the gut epithelium, we generated mice with intestine-specific deletion of N-WASP(iNWKO), by mating mice homozygous for a floxed N-WASP allele (N-WASPL2L/L2L) tomice expressing Cre recombinase under the villin promoter. Separately housed groups ofWT and iNWKO mice were inoculated with 5x108 GFP-expressing C. rodentium by intragastriclavage. Stool was collected 2, 4, 7, and 12 days after infection, and recoverablecolony forming units (CFUs) of C. rodentium were quantified by plating serial dilutions ofhomogenized stool on MacConkey's agar. GFP+ colonies were counted after 24 hoursincubation at 37°C. The presence of actin pedestals was investigated by electron microscopy(EM), and tight junction morphology was assessed by immunofluorescence staining ofoccludin, ZO-1 and claudin-2. Results: C. rodentium infection did not result in mortalityin WT or iNWKO mice. Compared to controls, iNWKO mice exhibited higher levels ofbacterial shedding during the first 4 days of infection (day 4 average: WT 5.2x104 CFU/gvs. iNWKO 4.7x105 CFU/g, p=0.08), followed by a more rapid clearance of C. rodentium, (day7-12 average: WT 2x106 CFU/g vs. iNWKO 2.7x105, p=0.01). EM and immunofluorescencerevealed the complete lack of actin pedestals in iNWKO mice and no mucosa-associatedGFP+ C. rodentium by day 7. WT controls exhibited tight junction disruption, reflected byaltered distribution of ZO-1, whereas iNWKO mice had no change in the pattern of ZO-1.Conclusion: Intestinal N-WASP is required for actin pedestal formation by C. rodentium InVivo, and ablation of N-WASP is associated with more rapid bacterial clearance and decreasedability of C. rodentium to disrupt intercellular junctions.
Resumo:
Corneal samples of cats with and without corneal diseases were screened with a pan-Chlamydiales PCR and specific PCRs for Parachlamydia, Protochlamydia, Chlamydophila felis, Acanthamoeba and feline herpesviruses (FHV-1). Several corneal samples tested positive for Parachlamydia and related Chlamydiales, indicating cat exposure to these intracellular bacteria.
Resumo:
1. Wood ants (Formica paralugubris) incorporate large amounts of solidified conifer resin into their nest, which reduces the density of many bacteria and fungi and protects the ants against some detrimental micro-organisms. By inducing an environment unfavourable to pathogens, the presence of resin may allow workers to reduce the use of their immune system. 2. The present study tested the hypothesis that the presence of resin decreases the immune activity of wood ants. Specifically, three components of the humoral immune defences of workers kept in resin-rich and resin-free experimental nests (antibacterial, lytic, and prophenoloxidase activities) were compared. 3. The presence of resin was associated with reduced bacterial and fungal densities in nest material and with a small decrease in worker antibacterial and lytic activities. The prophenoloxidase activity was very low in all workers and was not affected by the presence of resin. 4. These results suggest that collective medication with resin reduces pathogen pressure, which in turn decreases the use of the inducible part of the immune system. More generally, the use of plant secondary compounds might be an efficient and economical way to fight pathogens.
Resumo:
Social organisms are exposed to many pathogens, and have evolved various defence mechanisms to limit the cost of parasitism. Here we report the first evidence that ants use plant compounds as a collective mean of defence against microorganisms. The wood ants Formica paralugubris often incorporate large quantities of solidified conifer resin into their nests. By creating resin-free and resin-rich experimental nests, we demonstrate that this resin inhibits the growth of microorganisms in a context mimicking natural conditions. Such a collective medication probably confers major ecological advantages, and may be an unrecognized yet common feature of large, complex and successful societies.