941 resultados para pancreatic alteration
Resumo:
A obesidade está relacionada com o desenvolvimento da diabetes, estresse oxidativo, esteatose hepática, alteração da sensibilidade hormonal e redução da capacidade termogênica pelo tecido adiposo marrom (TAM). Na obesidade, alterações do sistema dopaminérgico mesocorticolímbico podem levar ao vício por alimentos palatáveis. Todas estas características contribuem para o baixo gasto energético e o alto consumo alimentar. Para estudar os efeitos em longo prazo da obesidade infantil, utilizamos o modelo de redução do tamanho da ninhada. Para induzir a superalimentação neonatal, o tamanho da ninhada foi reduzido para 3 filhotes machos de PN3 21 (grupo SL). O grupo controle permaneceu com 10 filhotes (grupo NL). Em PN120, o grupo SL foi dividido em: SL que recebeu ração controle e SL-Ca que recebeu dieta controle suplementada com 10g/kg de CaCO3. Os sacrifícios ocorreram em PN120 e PN180. Durante todo o período experimental, avaliamos o consumo alimentar e peso corporal. Em PN175, avaliamos a preferência alimentar dos animais por uma dieta rica em açúcar ou em lipídio. Avaliamos os hormônios por ELISA, RIA e quimioluminescência; o conteúdo proteico por Western blotting no fígado, tecido adiposo branco (TAB) e marrom (TAM), adrenal e regiões cerebrais; as atividades enzimáticas no soro e no fígado por cinética enzimática. Em PN21, PN120 e PN180, avaliamos in vivo a atividade simpática do TAM. Ao desmame, os ratos SL apresentaram maior estado pró-oxidativo no fígado e plasma e menor sensibilidade às catecolaminas no TAB. Na idade adulta, a suplementação é capaz de melhorar o estado pró-oxidativo no fígado e plasma, a sensibilidade à insulina e a microesteatose no fígado. Tanto a alteração de metabolismo/ação da vitamina D e do glicocorticóide no tecido adiposo como a menor capacidade termogênica do TAM contribuem para a maior adiposidade dos animais do grupo SL. A suplementação com cálcio corrigiu parte dessas alterações. A superalimentação pós-natal levou a redução da via dopaminérgica e a maior preferencia por gordura, enquanto a suplementação com cálcio normalizou esta via apenas a nível hipotalâmico e corrigiu a preferência alimentar. Nossos dados destacam o impacto benéfico da suplementação dietética com cálcio, que pode ter um papel nutricional promissor para auxiliar a perda de peso e minimizar os distúrbios relacionados a obesidade e a síndrome metabólica dos animais obesos que foram superalimentados na lactação.
Resumo:
In this paper, we report on the flexoelastic and viscoelastic ratios for a number of bimesogens compounds with the same generic structure. Values are obtained indirectly by measuring the flexoelectro-optic response in the chiral nematic phase. By varying the molecular structure we alter the bend angle, transverse dipole moment, and length of the molecule. First, to examine the influence of the bend angle we use a homologous series whereby the only alteration in the molecular structure is the number of methylene units in the aliphatic spacer, n . Results show that the flexoelastic ratio, e/K , and the effective flexoelectric coefficient, e , both exhibit an odd-even effect with values for n=odd being greater than that for n=even . This is understood in terms of an increase in the bend angle of the molecule and an increase in the transverse dipole moment. Second, in order to investigate the impact of the dipole moment, we have altered the mesogenic units so as to vary the longitudinal dipole moment and used different linkages in the aliphatic spacer in an attempt to alter the transverse dipole moment. Qualitatively, the results demonstrate that the odd-spaced bimesogen with larger transverse dipole moments exhibit larger flexoelastic ratios.
Resumo:
A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics. "
Resumo:
What Are ~umulat iveE ffects? Coastal managers now recognize that many of the most serious resource degradation problems have built up gradually as the combined outcome of numerous actions and choices which alone may have had relatively minor impacts. For example, alteration of essential habitat through wetland loss, degradation of water quality from nonpoint source pollution, and changes in salinity of estuarine waters from water diversion projects can be attributed to numerous small actions and choices. These incremental losses have broad spatial and temporal dimensions, resulting in the gradual alteration of structure and functioning of biophysical systems. In the environmental management field, the term "cumulative effects" is generally used to describe this phenomenon of changes in the environment that result from numerous, small-scale alterations.
Resumo:
Using a 10-yr time-series data set, we analyzed the effects of two severe droughts on water-quality and ecosystem processes in a temperate, eutrophic estuary (Neuse River Estuary, North Carolina). During the droughts, dissolved inorganic nitrogen concentrations were on average 46–68% lower than the long-term mean due to reduced riverine input. Phytoplankton productivity and biomass were slightly below average for most of the estuary during a spring–autumn drought in 2002, but were dramatically lower than average throughout the estuary during an autumn–winter drought in 2007–2008. Droughts affected upper trophic levels through alteration of both habitat condition (i.e., bottom-water dissolved oxygen levels) and food availability. Bottomwater dissolved oxygen levels were near or slightly above average during the 2002 drought and during summer 2007. Concomitant with these modest improvements in bottom-water oxygen condition, fish kills were greatly reduced relative to the long-term average. Low-oxygen bottom-water conditions were more pronounced during summer 2008 in the latter stages of the 2007–2008 drought, and mesozooplankton abundances were eight-fold lower in summer 2008 than during nondrought years. Below-average mesozooplankton abundances persisted for well over 1 yr beyond cessation of the drought. Significant fish kills were observed in summer 2008 and 2009, perhaps due to the synergistic effects of hypoxia and reduced food availability. These results indicate that droughts can exert both ephemeral and prolonged multiyear influence on estuarine ecosystem processes and provide a glimpse into the future, when many regions of the world are predicted to face increased drought frequency and severity due to climate change.
Resumo:
光敏核不育水稻晚粳农垦58S具有长日照下不育、短日照下可育的特点,是目前二系法杂交水稻应用的基础。对于其长日光周期引起雄性败育的特性已得到很多实验的支持,但这种光周期反应特性是光敏不育材料所特有,还是在水稻穗发育中普遍存在,目前尚不清楚。对这一问题的认识涉及到对光敏不育性本质的了解及对这一性状的有效利用,本文对此进行了系统的研究分析。 本研究以24种水稻品种包括光敏核不育系及常规水稻品种为材料,在控制光周期下进行。即利用16h长日照处理(LD)和l0h短日照处理(SD)及其不同组合,以抽穗期、叶龄、抽穗叶片总数、花粉育性、结实率、穗长、穗粒密度为指标,结合光敏不育系幼穗发育的形态解剖学特征,探讨了在整个水稻发育中包括叶片生长、幼穗分化以及穗发育等过程中,不同材料的光周期反应特征,尤其是二次枝梗期后的穗发育过程中的光周期反应特征。此外还分析了温度与光周期反应的关系及温度在光敏不育现象中的作用,并研究了代谢抑制剂对光敏不育特征的影响。 研究表明,光周期对水稻的出叶速度基本没有影响,但对水稻的抽穗叶龄有影响,长日照使抽穗叶龄增加而延迟其穗分化及抽穗。光周期还对幼穗分化后的穗发育过程有抑制延迟,作用,影响大小因品种而异,以对早稻、籼稻的影响最弱,对晚稻、粳稻的影响最强,与其穗分化中的感光性有明显的相关性。 除对抽穗期有影响外,穗发育阶段的长日光周期还影响着穗发育的其它性状,如使穗长增加,芒较长、稳粒密度降低,花粉育性降低,结实率下降。此外植株发育的其它性状也可受到影响,如剑叶发育不良表现为叶片缺少仅有叶鞘、倒二叶生长旺盛、植株较高等。同时几组不同组合的光周期处理结果均表明,长日光周期对水稻穗发育的影响主要发生在穗发育的前5-10天即颖花原基分化期、雌雄蕊原基分化期至花粉母细胞形成期。这些结果表明水稻的光周期反应不仅表现在茎端从营养生长向生殖生长的转换上(幼穗分化),而且还表现在幼穗分化完成后的穗发育过程中。长日光周期对晚稻穗发育均有抑制效应,且日长对稳发育的影响时期与光敏核不育水稻的‘育性转换敏感期’完全一致。因此在农垦58S中引起‘光敏不育’的原因很可能不是一种特殊的光周期反应,而是该材料雄性器官发生过程不能对长日光周期做出适当的反应。 对24种不同品种水稻的光周期反应表明,不同材料光周期反应特性不同。光敏不育系农垦58S与农垦58在对长日照的反应上也有较大不同,表现为前者在短日照下穗分化较快,在自然日照下抽穗较早。这表明除了育性不同外,农垦58S与农垦58在光周期反应特征上也有所不同,然而我们认为这种不同不是农垦58S表现光敏不育的主要原因。因为本研究中还发现,光敏不育系农垦58S与其可育回复突变体农垦58S(r)在抽穗期等光周期反应特征上相当一致,但在育性反应上却有较大不同,长日照下农垦58S(r)表现为雄性可育,而农垦58S表现为雄性败育。根据上述几方面的比较,我们认为光敏不育的机制很可能在于农垦58S突变体其雄性器官发育对环境不利信号的反应能力的变弱所致。 在本研究中发现,温度对水稻穗发育的影响表现在两个方面:一方面是通过影响光周期反应强弱而起作用,如高温可加强短日照下的穗分化和发育过程,高温亦可加强长日照对穗分化发育的抑制作用;另一方面是直接对器官发生过程产生影响,如在对短日照下光敏不育系和常规稻不同温度条件下处理时的结实率比较分析发现,常规稻的结实率与其抽穗扬花期的平均温度显著负相关,而光敏核不育水稻的结实率虽与抽穗扬花期的温度有一定相关性,但更与穗发育期的平均温度呈显著负相关,二者在受温度影响的作用时期上有显著差异,因此温度也可直接对雄性器官发育起作用。区分温度对光敏不育的两方面影响,同时考虑到光敏不育机制更有可能在于光敏不育系农垦58S雄性器官发育对环境信号反应能力的变弱的假设。我们就可以较好地理解农垦58S‘光敏不育’性状经杂交转育到对光周期弱感的籼稻中所出现的‘温敏不育性’。 核酸代谢抑制剂5-FU,2-TU对SD下的幼穗分化有较强抑制作用,使幼穗分化被迟滞,而2-BrDU和蛋白质合成抑制剂CHX、CL对其影响较小。抑制剂处理也不能诱导LD下的穗分化。 短日照下,5-FU可对穗发育有强烈抑制作用,可使常规品种农垦58及光敏不育系农垦58S穗畸形,颖花减少并发育不良,穗长缩短,枝梗减少,花粉败育甚至无花粉,结实率显著降低,其有效作用时期为穗发育的二次枝梗分化期至雌雄蕊原基分化期,与长日照诱导农垦58S败育的作用时期也完全吻合,5-FU对SD下穗发育的影响还可被核酸抑制剂的恢复剂乳清酸所部分恢复。其它代谢抑制剂如2-TU、CHX、CL等也可使农垦58S育性明显降饭,而所有这些抑制剂对常规可育的农垦58及农垦58S(r)的育性影响较小,表明它们与光敏不育系对抑制信号的反应能力有显著不同。 长日照下5-FU对LD下的农垦58S的幼穗发育也有很强的抑制作用,使稳长缩短,颖数减少,但它还可使部分LD下处理植株抽穗期较LD对照明显提前,并可使农垦58S育性部分恢复而有结实,说明5-FU还可对LD的抑制作用有抑制,通过对LD抑制作用的抑制使LD下的育性转换有部分恢复。其它代谢抑制剂在穗发育前期处理LD下农垦58S叶片均可看到植株在抽穗期较LD下提前5—8天的同时,其花粉育性有不同程度的提高,在高温长日下甚至有一定程度的结实率,表明各种抑制剂均可对穗发育中的光周期作用产生影响。 总之,本研究结果表明,短日植物水稻的光周期反应不仅存在于幼穗分化上,还存在于幼穗发育和花器官发生等发育过程中。幼穗发育的光周期效应表现为抽穗期、穗长、穗粒密度、结实率等多方面的变化,作用时期以穗发育早期的花器官发生阶段影响最大。作用强弱因品种不同而异,以粳稻和晚稻中作用较强。光敏不育突变的更主要变化可能在于农垦58S的雄性器官分化发育时对环境不利信号的反应能力变弱,导致其正常发育受阻,育性不能正常表达。温度在水稻穗发育上既可通过影响光周期反应而起作用,还可直接对穗器官发育产生影响而对育性表达起作用。此外我们还发现农垦58S与农垦58不仅在雄性育性上有显著不同,而且其光周期反应特性也有较大的差异。抑制剂处理结果也支持光敏不育系农垦58S的雄性器官发生过程较农垦58更易受抑制剂影响而育性降低,而抑制剂对长日光周期抑制作用的部分解除,可以使其育性有一定程度的恢复,也表明光周期对雄性育性的影响最为显著。这些结果可以帮助我们更加全面地认识光敏不育水稻的基本特性,从而为进一步开展光敏不育的转育及应用研究提供可靠的科学依据。
Resumo:
,The molecular dynamics research of the core domain of p53 protein crystal structure shows that besides the stability in biochemistry this domain also shows a high stability in molecular mechanics. Based on that work, the residue R249 was substituted with amino acids Gly and Ser respectively, and molecular dynamics researches were performed separately. The results show that these substitutions cause a relax tendency between loop2 and 3 domains, leading to an alteration of the whole conformation of p53 core domain and ruining its stability. The results visually explains the mechanism of p53 changes in immunological and biochemical reactions, which are caused by 249 residue substitutions from 3-D structure variations.
Resumo:
Habitat fragmentation usually results in alteration of species composition or biological communities. However, little is known about the effect of habitat fragmentation on the fig/fig wasp system. In this study, we compared the structure of a fig wasp community and the interaction between figs and fig wasps of Ficus racemosa L. in a primary forest, a locally fragmented forest and a highly fragmented forest. Our results show that, in the highly fragmented forest, the proportion of pollinator wasps is lower and the proportion of non-pollinator wasps is higher compared with the primary forest and locally fragmented forest. The proportion of fruits without pollinator wasps in mature fruits is also greatly increased in the highly fragmented forest. The proportion of galls in all female flowers increases in the highly fragmented forest, whereas the proportion of viable seeds does not change considerably. The disruption of groups of fig trees results in a decrease in pollinator wasps and even might result in the extinction of pollinator wasps in some extreme cases, which may transform the reciprocal interaction between figs and fig wasps into a parasite/host system. Such an effect may lead to the local extinction of this keystone plant resource of rain forests in the process of evolution, and thereby, may change the structure and function of the tropical rain forest.
Resumo:
Pancreatic RNase genes implicated in the adaptation of the colobine monkeys to leaf eating have long intrigued evolutionary biologists since the identification of a duplicated RNASE1 gene with enhanced digestive efficiencies in Pygathrix nemaeus. The recent emergence of two contrasting hypotheses, that is, independent duplication and one-duplication event hypotheses, make it into focus again. Current understanding of Colobine RNASE1 gene evolution of colobine monkeys largely depends on the analyses of few colobine species. The present study with more intensive taxonomic and character sampling not only provides a clearer picture of Colobine RNASE1 gene evolution but also allows to have a more thorough understanding about the molecular basis underlying the adaptation of Colobinae to the unique leaf-feeding lifestyle. The present broader and detailed phylogenetic analyses yielded two important findings: 1) All trees based on the analyses of coding, noncoding, and both regions provided consistent evidence, indicating RNASE1 duplication occurred after Asian and African colobines speciation, that is, independent duplication hypothesis; 2) No obvious evidence of gene conversion in RNASE1 gene was found, favoring independent evolution of Colobine RNASE1 gene duplicates. The conclusion drawn from previous studies that gene conversion has played a significant role in the evolution of Colobine RNASE1 was not supported. Our selective constraint analyses also provided interesting insights, with significant evidence of positive selection detected on ancestor lineages leading to duplicated gene copies. The identification of a handful of new adaptive sites and amino acid changes that have not been characterized previously also provide a necessary foundation for further experimental investigations of RNASE1 functional evolution in Colobinae.
Resumo:
Bone plays a key role in the paleontological and archeological records and can provide insight into the biology, ecology and the environment of ancient vertebrates. Examination of bone at the tissue level reveals a definitive relationship between nanomechanical properties and the local organic content, mineral content, and microstructural organization. However, it is unclear as to how these properties change following fossilization, or diagenesis, where the organic phase is rapidly removed and the remaining mineral phase is reinforced by the deposition of apatites, calcites, and other minerals. While the process of diagenesis is poorly understood, its outcome clearly results in the potential for dramatic alteration of the mechanical response of biological tissues. In this study, fossilized specimens of mammalian long bones, collected from Colorado and Wyoming, were studied for mechanical variations. Nanoindentation performed in both longitudinal and transverse directions revealed preservation of bone's natural anisotropy as transverse modulus values were consistently smaller than longitudinal values. Additionally, modulus values of fossilized bone from 35.0 to 89.1 GPa increased linearly with logarithm of the sample's age. Future studies will aim to clarify what mechanical and material elements of bone are retained during diagenesis as bone becomes part of the geologic milieu. © 2007 Materials Research Society.
Resumo:
Studies were conducted to know the effects of alum on the histological changes of silver barb (Barbodes gonionotus) fry in the aquarium. The use of up to 0.5 g/L of alum for 120 hours as means of treatment of fish diseases is safe. At this level, no abnormal behavior and pathological alteration were observed in the organs of experimental fish. As the doses increased to 1.25 g/L and above (1.5 g/L), experimental fishes exhibited abnormal movement and with marked histopathological changes in the various organs. A dose of above 0.5 g/L should be strictly prohibited.
Resumo:
Linear alkylbenzene sulfonate (LAS) are widely used in detergent industry. Due to contaminants entering the water, and the effects of their accumulation in fish, LAS, has a great importance in environmental pollution. In the present study, accumulation of LAS and its histological effects on gill tissue, liver and kidney of Caspian kutum (Rutilus frisii kutum) were studied. Caspian kutum is the most important and most valuable teleosts of the Caspian Sea. Due to releasing Caspian Kutum in rivers and Anzali Lagoon and unlimited entry of wastewater to the aquatic ecosystem, research on the impact of LAS on Caspian kutum is important. In the present study, fish exposed to sublethal concentrations of LAS (0.58, 1.16 and 2.32 mg/l) for 192 hours. Control treatments with three replicates at 0, 24, 48, 72, 96 and 192 hours were done. For assessments of the histological effects of LAS, tissue sections prepared and by using Hematoxylin - Eosin were stained, then the prepared sections, examined by light microscopy. For determination of the bio accumulation of LAS, the soxhlet extraction and solid phase extraction was performed to determine the amount of LAS using HPLC with fluorescence detector. According to results average of bioconcentration factor and LAS concentrations in fish had reached stable levels after approximately 72 h and thus represented steady state BCF values in this species. The value of steady-state bio-concentration factor of total LAS was 33.96 L.Kg- 1 and for each of the homologous C10-n-LAS, C11-n-LAS, C12-n-LAS and C13-n- LAS were 3.84, 6.15, 8.58 and 15.57 L.Kg-1 respectively. According to the results obtained in gills exposed to LAS, histopathological alteration include hypertrophy, lifting of lamella epithelium, edema, clubbing of lamellae hyperplasia, lamellar fusion and aneurysm were seen. In liver tissue exposed to three concentrations of LAS, congestion and dilation of sinusoids, irregular-shaped nuclei and degeneration in the hepatocyte, vacuolar degeneration and necrosis were observed. In kidney exposed to three concentrations of LAS, reduction of the interstitial haematopoietic tissue, degeneration in the epithelial cells of renal tubule, tubular degeneration, necrosis, shrinkage and luminal occlusion were observed. According to the results the most alteration due to exposure to LAS was seen in the gill tissue. None of the control samples showed histological effects of LAS.
Resumo:
The impact of Petrochemical Special Economic Zone (PETZONE) activities on the health status of Jafari Creek was studied by assessing the changes in macroinvertebrate assemblages in nine sites during September 2006- January 2008. Furthermore to evaluate the ecological status of the Jafari Creek the WFD indices (i.e. AMBI, M-AMBI) were used. The relationship between spatial pattern of macro invertebrate assemblages and ambient factors (i.e. water temperature, salinity, pH, dissolved oxygen, turbidity, electrical conductivity, total dissolved solid, total hardness, total nitrogen, ammonia, total phosphorous, chemical oxygen demand, biological oxygen demand, sediment grain size distribution, sediment organic content, heavy metals contents) was measured. Background Enrichment indices, Contamination factor and Contamination degree, were used to assess the health status in the study area based on Nickel, Lead, Cadmium and Mercury contents of the sediments. The macrobenthic communities had a low diversity and were dominated by opportunistic taxa, and the AMBI and M-AMBI indices need to be calibrated before using in Persian Gulf and its coastal waters. The BIO-ENV analysis identified pH, dissolved oxygen, TDS, and the total organic content of sediments as the major environmental variables influencing the infaunal pattern. This suggests that management should attempt to ensure minimal disturbance to environmental variables underlying the spatial variation in macroinvertebrate assemblages. Background Enrichment indices showed that the health of Jafari Creek has declined over time due to the constant discharge of heavy metals to the Creek system. Furthermore WQS index shows that the quality condition of the water column in Jafari Creek, regard to the calculated number (3) is week. These indices also identified a significant degree of pollution in the study area. The decrease in the ecological potential of Jafari Creek was best highlighted by the alteration in macrobenthic assemblages.
Resumo:
Chronic exposure to opiates impairs hippocampal long-term potentiation (LTP) and spatial memory, but the underlying mechanisms remain to be elucidated. Given the well known effects of adenosine, an important neuromodulator, on hippocampal neuronal excitability and synaptic plasticity, we investigated the potential effect of changes in adenosine concentrations on chronic morphine treatment-induced impairment of hippocampal CA1 LTP and spatial memory. We found that chronic treatment in mice with either increasing doses (20-100 mg/kg) of morphine for 7 d or equal daily dose (20 mg/kg) of morphine for 12 d led to a significant increase of hippocampal extracellular adenosine concentrations. Importantly, we found that accumulated adenosine contributed to the inhibition of the hippocampal CA1 LTP and impairment of spatial memory retrieval measured in the Morris water maze. Adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine significantly reversed chronic morphine-induced impairment of hippocampal CA1 LTP and spatial memory. Likewise, adenosine deaminase, which converts adenosine into the inactive metabolite inosine, restored impaired hippocampal CA1 LTP. We further found that adenosine accumulation was attributable to the alteration of adenosine uptake but not adenosine metabolisms. Bidirectional nucleoside transporters (ENT2) appeared to play a key role in the reduction of adenosine uptake. Changes in PKC-alpha/beta activity were correlated with the attenuation of the ENT2 function in the short-term (2 h) but not in the long-term (7 d) period after the termination of morphine treatment. This study reveals a potential mechanism by which chronic exposure to morphine leads to impairment of both hippocampal LTP and spatial memory.
Resumo:
Lake Victoria is the second largest lake in the world (69000km2) by surface area, but it is the shallowest (69m maximum depth) of the African Great Lakes. It is situated across the equator at an altitude of 1240m and lies in a shallow basin between two uplifted ridges of the eastern and western rift valleys (Beadle 1974). Despite their tropical locations, African lakes exhibit considerable seasonality related to the alteration of warm, wet and cool, dry seasons and the accompanying changes in lucustrine stratification and mixing (Tailing, 1965; 1966; Melack 1979; Hecky& Fee 1981; Hecky& Kling,1981; 1987; Bootsma 1993; Mugidde 1992; 1993). Phytoplankton productivity, biomass and species composition change seasonally in response to variations in light environment and nutrient availability which accompany changes in mixed layer depth and erosion or stabilization of the metalimnion / hypolimnion (Spigel & Coulter 1996; Hecky et al., 1991; Tailing 1987). Over longer, millennial time scales, the phytoplankton communities of the African Great Lakes have responded to variability in the EastAfrican climate (Johnson 1996; Haberyan& Hecky, 1986) which also alters the same ecological factors (Kilham et al., 1986). Recently, over the last few decades, changes in external and or internal factors in Lake Victoria and its basin have had a profound inlluence on the planktic community of this lake (Hecky, 1993; Lipiatou et al., 1996). The lake has experienced 2-10x increases in chlorophyll and 2x increase in primary productivity since Tailing's observations in the early 1960s (Mugidde 1992, 1993). In addition to observed changes in the lake nutrient chemistry (Hecky & Mungoma, 1990; Hecky & Bugenyi 1992; Hecky 1993; Bootsma & Hecky 1993), the deep waters previouslyoxygenated to the sediment surface through most of the year are now regularly anoxic(Hecky et al., 1994).