989 resultados para organic nitrogen compounds


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 µatm) under three nutrient conditions [nutrient replete (R), nitrate limited (-N), and phosphate limited (-P)]. We focused on calcite and organic carbon quotas and on nitrate and phosphate utilization by analyzing the activity of nitrate reductase (NRase) and alkaline phosphatase (APase), respectively. Particulate inorganic (PIC) and organic (POC) carbon quotas increased with increasing CO2 under R conditions but a different pattern was observed under nutrient limitation. The PIC:POC ratio decreased with increasing CO2 in nutrient limited cultures. Coccolith length increased with CO2 under all nutrient conditions but the coccosphere volume varied depending on the nutrient treatment. Maximum APase activity was found at 561 ?atm of CO2 (pH 7.92) in -P cultures and in R conditions, NRase activity increased linearly with CO2. These results suggest that E. huxleyi's competitive ability for nutrient uptake might be altered in future high-CO2 oceans. The combined dataset will be useful in model parameterizations of the carbon cycle and ocean acidification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification (OA), induced by rapid anthropogenic CO2 rise and its dissolution in seawater, is known to have consequences for marine organisms. However, knowledge on the evolutionary responses of phytoplankton to OA has been poorly studied. Here we examined the coccolithophore Gephyrocapsa oceanica, while growing it for 2000 generations under ambient and elevated CO2 levels. While OA stimulated growth in the earlier selection period (from generations 700 to 1550), it reduced it in the later selection period up to 2000 generations. Similarly, stimulated production of particulate organic carbon and nitrogen reduced with increasing selection period and decreased under OA up to 2000 generations. The specific adaptation of growth to OA disappeared in generations 1700 to 2000 when compared with that at 1000 generations. Both phenotypic plasticity and fitness decreased within selection time, suggesting that the species' resilience to OA decreased after 2000 generations under high CO2 selection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic matter contained in surface sediments from four regions on the western Portuguese shelf, which are influenced by coastal upwelling and fluvial input, was analysed with respect to elemental organic carbon (Corg) and nitrogen (Ntotal) content and isotopic carbon and nitrogen ratios (d13Corg, d15N). Corg/Ntotal weight ratios and d13Corg values are interpreted in terms of terrigenous or marine organic matter sources, supported by CaCO3 content. Organic matter in the shelf sediments is mainly of marine origin, with increasing terrigenous components only close to rivers and estuaries. In the northern shelf region the data indicates significant terrigenous supply by the Douro River. North of the Nazaré Canyon organic matter composition implies a mainly marine origin, with a higher terrestrial influence close to the canyon head. Organic matter composition in the central shelf region, which is dominated by the Tagus Estuary and the Tagus prodelta, reveals a change from a continental-type signature within the estuary to a more marine-type signature further to the west and south of the estuary mouth. In the southern region near Cape Sines the geochemical properties clearly reflect the marine origin of sedimentary organic matter. Sedimentary d15N values are interpreted to reflect various degrees of assimilation of seasonally upwelled nitrate, in relation to the upwelling centres. In the estuarine environment, inputs of agriculturally influenced dissolved inorganic nitrogen are reflected in the sediments. No evidence for N2-fixation or denitrification is found. On the central shelf north of the Nazaré canyon, sedimentary d15N values are close to marine d15NO3- and thus indicate a complete NO3- assimilation and N-limitation of marine production. Light d15N values in distal sediments off the Douro River mouth and in samples south of C. Sines reflect high NO3- supply and a close proximity to the seasonal upwelling centres. Particularly in sediments form the Sines region, light d15N values in southern samples reflect stronger upwelling further south.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum(IMS101) showed that increasing CO2 partial pressure (pCO2) enhances N2 fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO2, its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses ofTrichodesmium IMS101 grown under a matrix of low and high levels of pCO2 (150 and 900 µatm) and irradiance (50 and 200 µmol photons m-2 s-1). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO2 and light levels in the cultures. The pCO2-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO2 stimulated rates of N2fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO2. HCO3- was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO2 uptake was enhanced under high pCO2. A comparison between carbon fluxes in vivo and those derived from 13C fractionation indicates high internal carbon cycling, especially in the low-pCO2treatment under high light. Light-dependent oxygen uptake was only detected underlow pCO2 combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO2 effect on N2fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO2. These findings are supported by a complementarystudy looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geochemical studies of organic "biomarker" compounds were applied to Eemian sediments cored at Dagebuell (DA-1) on the west coast, and at Krummland (KR-1) in the east of the Baltic Zone of Schleswig-Holstein, Germany. 10 samples from the early stage of the Eemian Transgression to the high Eem at Krummland, and 24 samples from the peak and late phases of the Eemian at Dagebuell provide new insights on the development of the Eemian Sea in the region. C37-C39-ethyl- and methyl-ketones in the Krummland sediments indicated unstable conditions at the onset of the marine trangression, and freshwater influence in keeping with their shallow nearshore environment. In the Dagebuell deposits, patterns typical of marine to brackish conditions were observed, comparable to those found today in the Skagerrak and Belt Sea areas. The sea-surface temperatures estimated from the alkenone unsaturation ratio UK37 at DA-1 corroborate the evidence from "standard" faunal and pollen assemblages, and lithological successions. Here, the temperature maximum attained in pollen assemblage zone PAZ Illc, indicates the early onset of very warm conditions, preceding the highest sea level of the penultimate interglacial by 8,000 years, based on previously published U/Th ages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All species of coccolithophore appear to respond to perturbations of carbonate chemistry in a different way. Here, we show that the degree of malformation, growth rate and stable isotopic composition of organic matter and carbonate produced by two contrasting species of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) are indicative of differences between their photosynthetic and calcification response to changing DIC levels (ranging from ~1100 to ~7800 µmol/kg) at constant pH (8.13 ± 0.02). Gephyrocapsa oceanica thrived under all conditions of DIC, showing evidence of increased growth rates at higher DIC, but C. braarudii was detrimentally affected at high DIC showing signs of malformation, and decreased growth rates. The carbon isotopic fractionation into organic matter and the coccoliths suggests that C. braarudii utilises a common internal pool of carbon for calcification and photosynthesis but G. oceanica relies on independent supplies for each process. All coccolithophores appear to utilize bicarbonate as their ultimate source of carbon for calcification resulting in the release of a proton. But, we suggest that this proton can be harnessed to enhance the supply of CO2(aq) for photosynthesis either from a large internal HCO3- pool which acts as a pH buffer (C. braarudii), or pumped externally to aid the diffusive supply of CO2 across the membrane from the abundant HCO3- (G. oceanica), likely mediated by an internal and external carbonic anhydrase respectively. Our simplified hypothetical spectrum of physiologies may provide a context to understand different species response to changing pH and DIC, the species-specific delta p and calcite "vital effects", as well as accounting for geological trends in coccolithophore cell size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study investigates the combined effect of phosphorous limitation, elevated partial pressure of CO2 (pCO2) and temperature on a calcifying strain of Emiliania huxleyi (PML B92/11) by means of a fully controlled continuous culture facility. Two levels of phosphorous limitation were consecutively applied by renewal of culture media (N:P = 26) at dilution rates (D) of 0.3 d- and 0.1 d-1. CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C and 900 µatm pCO2 at 18 °C. In general, the steady state cell density and particulate organic carbon (POC) production increased with pCO2, yielding significantly higher concentrations in cultures grown at 900 µatm pCO2 compared to 300 and 550 µatm pCO2. At 900 µatm pCO2, elevation of temperature as expected for a greenhouse ocean, further increased cell densities and POC concentrations. In contrast to POC concentration, C-quotas (pmol C cell-1) were similar at D = 0.3 d-1 in all cultures. At D = 0.1 d-1, a reduction of C-quotas by up to 15% was observed in the 900 µatm pCO2 at 18 °C culture. As a result of growth rate reduction, POC:PON:POP ratios deviated strongly from the Redfield ratio, primarily due to an increase in POC. Ratios of particulate inorganic and organic carbon (PIC:POC) ranged from 0.14 to 0.18 at D = 0.3 d-1, and from 0.11 to 0.17 at D = 0.1 d-1, with variations primarily induced by the changes in POC. At D = 0.1 d-1, cell volume was reduced by up to 22% in cultures grown at 900 µatm pCO2. Our results indicate that changes in pCO2, temperature and phosphorus supply affect cell density, POC concentration and size of E. huxleyi (PML B92/11) to varying degrees, and will likely impact bloom development as well as biogeochemical cycling in a greenhouse ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three conical sediment were deployed at three depths 968 m (top trap), 1976 m (middletrap), and 2938 m (50mabove the bottom, bottom trap) - from June 27, 2004 to April 27, 2005 on the NW Atlantic margin at a water depth of 2988 m. The sediment trap carousels were programmed to open each collection cup for 23.4 days for the top trap and 14.5 days for the other two traps, resulting in total 13 samples from the top trap and 21 samples each from the middle and bottom traps. The samples were analyzed for the biogeochemical properties with various methods. Frequent occurrences of higher fluxes in deep relative to shallower sediment traps and low delta 14C values of sinking POC together provide strong evidence for significant lateral transport of aged organic matter over the margin. Comparison of biogeochemical properties such as aluminum concentration and flux, and iron concentration between samples intercepted at different depths shows that particles collected by the deepest trap had more complex sources than the shallower ones. These data also suggest that at least two modes of lateral transport exist over the New England margin. Based on radio carbon mass balance, about 30% (± 10%) of sinking POC in all sediment traps is estimated to be derived from lateral transport of re-suspended sediment. A strong correlation between delta 14C values and aluminum concentrations suggests that the aged organic matter is associated with lithogenic particles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solution-processed hybrid organic–inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7–10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste estudo foi investigado como a distribuição das espécies e a produção de biomassa de macrófitas aquáticas são influenciadas pelas condições físico-químicas do ambiente. Também foi avaliado como uma espécie com maior potencial competitivo pode interferir na diversidade de espécies da comunidade macrofítica. Para tanto, em cada um dos três arroios, foram dispostos seis transecções, perpendiculares à margem. Em cada transecção foram demarcadas três unidades amostrais de 1m², nas quais foram registrados os parâmetros fitossociológicos cobertura e frequência relativas e valor de importância. A diversidade de espécies foi estimada pelo índice de Shannon, utilizando os valores de cobertura de espécies. Para determinar a biomassa das macrófitas aquáticas foram usados quadrats de 0,25m², alocados dentro da unidade amostral de 1m² usadas para quantificar os dados fitossociológicos, nos mesmos pontos onde foi feito o levantamento de cobertura da vegetação. Utilizamos como variáveis preditoras a velocidade da corrente, radiação solar incidente, coeficiente de sombreamento, vegetação ripária arbórea adjacente, nitrogênio orgânico dissolvido, carbono orgânico dissolvido e condutividade elétrica. Foram registradas 32 espécies de macrófitas aquáticas, distribuídas em 19 famílias e 28 gêneros. Conforme Análise de Correspondência Canônica (CCA), as espécies com maiores valores de biomassa foram relacionadas a unidades amostrais com alta incidência luminosa. As unidades amostrais com dominância de Pistia stratiotes apresentaram menor diversidade de espécies indicando que esta espécie, quando encontra condições que permitam sua proliferação, pode excluir espécies de menor potencial competitivo. De acordo com GLM (Generalized Linear Model), a ausência de vegetação ripária ou presente em apenas uma das margens e baixas velocidades de corrente configura-se em condições favoráveis ao estabelecimento e desenvolvimento de macrófitas aquáticas, possibilitando produção maiores valores de biomassa.