967 resultados para nitrogen fertilizing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial dodecylbenzene cable fluid was aged at temperatures of 105 and 135 degrees C in dry oxygen-free nitrogen. In addition, selected samples were aged at 135 degrees C under sealed conditions where air was excluded from the headspace above the oil. A variety of analytical techniques, such as ultra-violet visible and infra-red spectroscopy, acid number and water content measurements, were then used to characterize the aged oils. In addition, their electrical properties were assessed by dielectric spectroscopy. Compared with ageing in air, the ageing rate was reduced significantly and, as expected, no major oxidation peaks were detected in the infrared spectrometer. Significantly, very little absorbance at 680 nm ("red absorbers") was detected in samples aged with copper and, consequentially, no large increases in dielectric loss were recorded within the ageing times considered here. This study compliments previous investigations on cable fluid and 1-phenyldodecane aged in air and show that the same ageing indicators are valid in oils aged under conditions which more closely resemble those found in high voltage plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions of [Mo(eta(3)-C3H5)Br(CO)(2)(NCMe)(2)] with the bidentate nitrogen ligands 2-(2'-pyridyl)imidazole (L1), 2-(2'-pyridyl)benzimidazole (L2), N,N'-bis(2'-pyridinecarboxamido)-1,2-ethane (L3), and 2,2'-bisimidazole (L4) led to the new complexes [Mo(eta(3)-C3H5)Br(CO)(2)(L)] (L = L1, 1; L2, 2; L4, 4) and [{Mo(eta(3)-C3H5) Br(CO)(2)}(2)(mu-L-3)] (3). The reaction of complexes 2 and 3 with Tl[CF3SO3] afforded [Mo(eta(3)-C3H5)(CF3SO3)(CO)(2)(L2)] (2T) and [{Mo(eta(3)-C3H5)(CF3SO3)(CO)(2)}(2)(mu-L-3)] (3T). Complexes 3 and 2T were structurally characterized by single crystal X-ray diffraction, showing the facial allyl/carbonyls arrangement and the formation of the axial isomer. In 2T, two molecules are assembled in a hydrogen bond dimer. The four complexes 1-4 were tested as precursors in the catalytic epoxidation of cyclooctene and styrene, in the presence of t-butylhydroperoxide (TBHP), with moderate conversions and turnover frequencies for complexes 1-3 and very low ones for 4. The increasing number of N-H groups in the complexes seems to be responsible for the loss of catalytic activity, compared with other related systems. The cytotoxic activities of all the complexes were evaluated against HeLa cells. The results showed that compounds 1,2,4, and 2T exhibited significant activity, complexes 2 and 2T being particularly promising. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[2,3]-Sigmatropic rearrangements of allylic ammonium ylids derived from glycinoylcamphorsultams are highly selective in terms of relative and absolute stereocontrol only when acyclic alkenes are present. When chiral esters of ylids derived from N-methyltetrahydro-pyridine ('NMTP') undergo rearrangement, the reactions show exclusive cis-stereoselectivity but the products are obtained with virtually no absolute stereocontrol. These observations support the notion that sigmatropic rearrangements of N-chiral ammonium ylids are controlled by nitrogen stereogenicity. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field experiments were conducted over 3 years to study the effect of applying triazole and strobilurin fungicides on the bread-making quality of Malacca winter wheat. Averaged over all years the application of a fungicide programme increased yields, particularly when strobilurin fungicides were applied. Reductions in protein concentration, sulphur concentration, Hageberg failing number and loaf volumes also occurred as the amount of fungicide applied increased. However, there were no deleterious effects of fungicide application on sodium dodecyl sulphate (SDS) sedimentation volumes, N:S ratios or dough theology. Effects of fungicide application on bread-making quality were not product specific. Therefore, it appears that new mechanisms to explain strobilurin effects on bread-making quality do not need to be invoked. Where reductions in protein concentration did occur they could be compensated for by a late-season application of nitrogen either as granular ammonium nitrate at flag leaf emergence or foliar urea at anthesis. These applications, however, sometimes increased the N:S ratio of the extracted flour and failed to improve loaf volume. Multiple regression analysis revealed that main effects of year, flour protein concentration and N:S ratio could explain 93% of the variance in loaf volume caused by season, fungicide and nitrogen treatments. However, an equally good fit was achieved by just including sulphur concentration with year. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteolysis of Serpa cheese produced traditionally (B) and semi-industrially (C) was evaluated for the first time by determination of nitrogen content and capillary zone electrophoresis (CZE). A citrate dispersion of cheese was fractionated to determine the nitrogen in pH 4.4, trichloroacetic and phosphotungstic acid soluble fractions (pH 4.4-SN, TCA-SN and PTA-SN, respectively). The pH 4.4-SN was significantly higher for B ( P < 0.001), while TCA-SN was significantly higher for C ( P < 0.001). PTA-SN was also higher for C but at 60 days ripening no significant difference was found between B and C. Degradation of alpha(s1) - and beta-caseins evaluated by CZE was in good agreement with the maturation index (pH 4.4-SN/TN).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An evaluation of milk urea nitrogen (MUN) as a diagnostic of protein feeding in dairy cows was performed using mean treatment data (n = 306) from 50 production trials conducted in Finland (n = 48) and Sweden (n = 2). Data were used to assess the effects of diet composition and certain animal characteristics on MUN and to derive relationships between MUN and the efficiency of N utilization for milk production and urinary N excretion. Relationships were developed using regression analysis based on either models of fixed factors or using mixed models that account for between-experiment variations. Dietary crude protein (CP) content was the best single predictor of MUN and accounted for proportionately 0.778 of total variance [ MUN (mg/dL) = -14.2 + 0.17 x dietary CP content (g/kg dry matter)]. The proportion of variation explained by this relationship increased to 0.952 when a mixed model including the random effects of study was used, but both the intercept and slope remained unchanged. Use of rumen degradable CP concentration in excess of predicted requirements, or the ratio of dietary CP to metabolizable energy as single predictors, did not explain more of the variation in MUN (R-2 = 0.767 or 0.778, respectively) than dietary CP content. Inclusion of other dietary factors with dietary CP content in bivariate models resulted in only marginally better predictions of MUN (R-2 = 0.785 to 0.804). Closer relationships existed between MUN and dietary factors when nutrients (CP to metabolizable energy) were expressed as concentrations in the diet, rather than absolute intakes. Furthermore, both MUN and MUN secretion (g/d) provided more accurate predictions of urinary N excretion (R-2 = 0.787 and 0.835, respectively) than measurements of the efficiency of N utilization for milk production (R-2 = 0.769). It is concluded that dietary CP content is the most important nutritional factor influencing MUN, and that measurements of MUN can be utilized as a diagnostic of protein feeding in the dairy cow and used to predict urinary N excretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports effects of chestnut and mimosa tannins on N utilisation in sheep. Tannins were added to grass either at ensilage or incorporated into grass silage at feeding. The study used an 8 × 5 incomplete Latin Square design with eight mature wether sheep and five 21-day periods. Tannin additions reduced in vivo apparent digestibilities of dry matter (DM), organic matter (OM) and neutral detergent fibre (aNDFom) compared with the untreated control silage (P<0.001). Reductions ranged from 7.6% for DM to 8.5% for aNDFom. Chestnut compared to mimosa tannin silages produced higher values for DM intake (734 g/day versus 625 g/day) and in vivo digestibility for DM, OM and aNDFom (0.66, 0.68 and 0.69 versus 0.61, 0.63 and 0.62; P<0.001). A substantial shift occurred in the pattern of N excretion in sheep fed the tannin versus control silages. As a proportion of daily N intake, urinary N losses were lower (56.4 g/100 g N versus 65.1 g/100 g N intake) and faecal N losses were higher (40.2 g/100 g N versus 29.8 g/100 g N intake) for sheep fed the tannin silages compared with those fed the control grass silage (P<0.001). Nitrogen intake was higher in sheep fed the chestnut compared to mimosa tannin silages (16.2 g/day versus 13.4 g/day; P<0.001), reflecting the lower DM intake of sheep fed the mimosa silages. However, faecal N loss was lower for chestnut compared to mimosa tannin silage fed sheep (38.2 g/100 g N versus 42.1 g/100 g N intake; P<0.01), resulting in higher N retentions with the chestnut compared to the mimosa silage fed sheep (5.49 g/100 g N versus 1.38 g/100 g N intake). Faecal N losses were also higher when tannins were added during ensiling rather than at feeding (P<0.05). Although there was no overall effect of tannins on N retention in mature wether sheep, it is likely that productive ruminants with higher protein requirements would retain more N from silages containing chestnut tannins. Tannins added externally to grass silages may generate some benefits on N utilisation and environmental N excretions in sheep fed the silages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of N utilization in ruminants is typically low (around 25%) and highly variable (10% to 40%) compared with the higher efficiency of other production animals. The low efficiency has implications for the production performance and environment. Many efforts have been devoted to improving the efficiency of N utilization in ruminants, and while major improvements in our understanding of N requirements and metabolism have been achieved, the overall efficiency remains low. In general, maximal efficiency of N utilization will only occur at the expense of some losses in production performance. However, optimal production and N utilization may be achieved through the understanding of the key mechanisms involved in the control of N metabolism. Key factors in the rumen include the efficiency of N capture in the rumen (grams of bacterial N per grams of rumen available N) and the modification of protein degradation. Traditionally, protein degradation has been modulated by modifying the feed (physical and chemical treatments). Modifying the rumen microflora involved in peptide degradation and amino acid deamination offers an alternative approach that needs to be addressed. Current evidence indicates that in typical feeding conditions there is limited net recycling of N into the rumen (blood urea-N uptake minus ammonia-N absorption), but understanding the factors controlling urea transport across the rumen wall may reverse the balance to take advantage of the recycling capabilities of ruminants. Finally, there is considerable metabolism of amino acids (AA) in the portal-drained viscera (PDV) and liver. However, most of this process occurs through the uptake of AA from the arterial blood and not during the ‘absorptive’ process. Therefore, AA are available to the peripheral circulation and to the mammary gland before being used by PDV and the liver. In these conditions, the mammary gland plays a key role in determining the efficiency of N utilization because the PDV and liver will use AA in excess of those required by the mammary gland. Protein synthesis in the mammary gland appears to be tightly regulated by local and systemic signals. The understanding of factors regulating AA supply and absorption in the mammary gland, and the synthesis of milk protein should allow the formulation of diets that increase total AA uptake by the mammary gland and thus reduce AA utilization by PDV and the liver. A better understanding of these key processes should allow the development of strategies to improve the efficiency of N utilization in ruminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an application of cavity-enhanced absorption spectroscopy with an off-axis alignment of the cavity formed by two spherical mirrors and with time integration of the cavity-output intensity for detection of nitrogen dioxide (NO2) and iodine monoxide (IO) radicals using a violet laser diode at lambda = 404.278 nm. A noise-equivalent (1sigma = root-mean-square variation of the signal) fractional absorption for one optical pass of 4.5x10(-8) was demonstrated with a mirror reflectivity of similar to0.99925, a cavity length of 0.22 m and a lock-in-amplifier time constant of 3 s. Noise-equivalent detection sensitivities towards nitrogen dioxide of 1.8x10(10) molecule cm(-3) and towards the IO radical of 3.3x10(9) molecule cm(-3) were achieved in flow tubes with an inner diameter of 4 cm for a lock-in-amplifier time constant of 3 s. Alkyl peroxy radicals were detected using chemical titration with excess nitric oxide (RO2 + NO --> RO + NO2). Measurement of oxygen-atom concentrations was accomplished by determining the depletion of NO2 in the reaction NO2 + O --> NO + O-2. Noise-equivalent concentrations of alkyl peroxy radicals and oxygen atoms were 3x10(10) molecule cm(-3) in the discharge-flow-tube experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions between atmospheric oxidants and organic amphiphiles at the air water interface of an aerosol droplet may affect the size and critical supersaturation required for cloud droplet formation. We demonstrate that no reaction occurs between gaseous nitrogen dioxide (1000 ppm in air) and a monolayer of an insoluble amphiphile, oleic acid (cis-9-octadecenoic acid), at the air water interface which removes material from the air water interface. We present evidence that the NO2 isomerises the cis-9-octadecenoic (oleic) acid to trans-9-octadecenoic (elaidic) acid. The study presented here is important for future and previous studies of (1) the reaction between the nitrate radical, NO3, and thin organic films as NO2 is usually present in high concentrations in these experimental systems and (2) the effect of NO2 air pollution on the unsaturated fatty acids and lipids found at the air liquid surface of human lung lining fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two controlled microcosm experiments aimed at a critical re-assessment of the contributions of divergent arbuscular mycorrhizal (AM) fungi to plant mineral nutrition were established that specifically targeted Plantago lanceolata–Glomus intraradices (B.B/E) and –Gigaspora margarita (BEG 34) symbioses developed in a native, nutrient limited, coastal dune soil. Plant tissue nitrogen (N), phosphorus (P) and potassium (K) status as well as plant growth parameters and levels of mycorrhizal colonization were assessed at harvest. In addition to the general well-established mycorrhizal facilitation of P uptake, the study was able to demonstrate a G. intraradices-specific contribution to improved plant nitrogen and potassium nutrition. In the two respective experiments, G. intraradices-inoculated plants had 27.8% and 40.8% more total N and 55.8% and 23.3% more total K when compared to Gi. margarita inoculated counterparts. Dissimilar overall contribution of the two isolates to plant nutrition was identified in AM-genus specific differences in plant tissue N:P:K ratios. G. intraradices inoculated and non-mycorrhizal plants generally exhibited N:P:K ratios indicative of P limitation whereas for Gi.margarita mycorrhizal plants, corresponding ratios strongly implied either N or K limitation. The study provides further evidence highlighting AM functional biodiversity in respect to plant nutrient limitation experienced by mycorrhizal P. lanceolata in an ecologically relevant soil system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near isogenic lines (NILs) varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1a) in a cvar Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared at a field site in Berkshire, UK, but within different systems (‘organic’, O, in 2005/06, 2006/07 and 2007/08 growing seasons v. ‘conventional’, C, in 2005/06, 2006/07, 2007/08 and 2008/09). In 2007 and 2008, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in both Maris Huntsman and Maris Widgeon backgrounds were added. The contrasting systems allowed NILs to be tested in diverse rotational and agronomic, but commercially relevant, contexts, particularly with regard to the assumed temporal distribution of nitrogen availability, and competition from weeds. For grain, nitrogen-use efficiency (NUE; grain dry matter (DM) yield/available N; where available N=fertilizer N+soil mineral N), recovery of N in the grain (grain N yield/available N), N utilization efficiency to produce grain (NUtEg; grain DM yield/above-ground crop N yield), N harvest index (grain N yield/above-ground crop N yield) and dry matter harvest index (DMHI; grain DM yield/above-ground crop DM yield) all peaked at final crop heights of 800–950 mm. Maximum NUE occurred at greater crop heights in the organic system than in the conventional system, such that even adding just a semi-dwarfing allele (Rht-D1b) to the shortest background, Mercia, reduced NUE in the organic system. The mechanism of dwarfing (gibberellin sensitive or insensitive) made little difference to the relationship between NUE and its components with crop height. For above-ground biomass: dwarfing alleles had a greater effect on DM accumulation compared with N accumulation such that all dwarfing alleles could reduce nitrogen utilization efficiency (NUtE; crop DM yield/crop N yield). This was particularly evident at anthesis in the conventional system when there was no significant penalty for severe dwarfism for N accumulation, despite a 3-tonne (t)/ha reduction in biomass compared to the tallest lines. Differences between genotypes for recovery of N in the grain were thus mostly a function of net N uptake after anthesis rather than of remobilized N. This effect was compounded as dwarfing, except when coupled with Ppd-D1a, was associated with delayed anthesis. In the organic experiments there was greater reliance on N accumulated before anthesis, and genotype effects on NUE were confounded with effects on N accumulated by weeds, which was negatively associated with crop height. Optimum height for maximizing wheat NUE and its components, as manipulated by Rht alleles, thus depend on growing system, and crop utilization (i.e. biomass or grain production).